美文网首页
算法|二叉树的最大最小深度、完全二叉树个数

算法|二叉树的最大最小深度、完全二叉树个数

作者: 激扬飞雪 | 来源:发表于2022-11-30 21:41 被阅读0次

    一、 104. 二叉树的最大深度

    题目链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree/
    思路一:使用后序遍历,依次求出节点的高度,根节点的最大高度就是二叉树的最大深度

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int maxDepth(TreeNode root) {
            if (root == null) return 0;
            int leftDepth = maxDepth(root.left);
            int rightDepth = maxDepth(root.right);
            return Math.max(leftDepth, rightDepth) + 1;
        }
    }
    

    思路二、使用前序遍历,求深度

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        int result = 0;
        private void maxDepth(TreeNode root, int depth) {
            result = depth > result ? depth : result;
            if (root.left == null && root.right == null) return;
            if (root.left != null) {
                depth++;
                maxDepth(root.left, depth);
                depth--;
            }
            if (root.right != null) {
                depth++;
                maxDepth(root.right, depth);
                depth--;
            }
        }
        public int maxDepth(TreeNode root) {
            if (root == null) return 0;
            maxDepth(root, 1);
            return result;
        }
    }
    

    思路三、使用层序遍历,求有总共多少层

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int maxDepth(TreeNode root) {
            if (root == null) return 0;
            int depth = 0;
            Queue<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                int size = queue.size();
                depth++;
                while (size-- > 0) {
                    TreeNode treeNode = queue.poll();
                    if (treeNode.left != null) queue.offer(treeNode.left);
                    if (treeNode.right != null) queue.offer(treeNode.right); 
                }
            }
            return depth;
        }
    }
    

    二、559. N 叉树的最大深度

    题目链接:https://leetcode.cn/problems/maximum-depth-of-n-ary-tree/
    思路一、使用后序遍历,求每个节点的最大高度

    /*
    // Definition for a Node.
    class Node {
        public int val;
        public List<Node> children;
    
        public Node() {}
    
        public Node(int _val) {
            val = _val;
        }
    
        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    };
    */
    
    class Solution {
        public int maxDepth(Node root) {
            if (root == null) return 0;
            int maxDepth = 0;
            for (int i = 0; root.children != null && i < root.children.size(); i++) {
                maxDepth = Math.max(maxDepth, maxDepth(root.children.get(i)));
            }
            return maxDepth + 1;
        }
    }
    

    思路二:前序遍历

    /*
    // Definition for a Node.
    class Node {
        public int val;
        public List<Node> children;
    
        public Node() {}
    
        public Node(int _val) {
            val = _val;
        }
    
        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    };
    */
    
    class Solution {
        private int result = 0;
        private void maxDepth(Node root, int depth) {
            result = depth > result ? depth : result;
            if (root.children == null || root.children.isEmpty()) return;
            for (int i = 0; i < root.children.size(); i++) {
                Node childNode = root.children.get(i);
                if (childNode != null) {
                    depth++;
                    maxDepth(childNode, depth);
                    depth--;
                }
                
            }
        }
        public int maxDepth(Node root) {
            if (root == null) return result;
            maxDepth(root, 1);
            return result;
        }
    }
    

    思路三、层序遍历

    /*
    // Definition for a Node.
    class Node {
        public int val;
        public List<Node> children;
    
        public Node() {}
    
        public Node(int _val) {
            val = _val;
        }
    
        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    };
    */
    
    class Solution {
        public int maxDepth(Node root) {
            if (root == null) return 0;
            int depth = 0;
            Queue<Node> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                int size = queue.size();
                depth++;
                while (size-- > 0) {
                    Node node = queue.poll();
                    for (int i = 0; node.children != null && i < node.children.size(); i++) {
                        queue.offer(node.children.get(i));
                    }
                }
            }
            return depth;
        }
    }
    

    三、 111. 二叉树的最小深度

    题目链接:https://leetcode.cn/problems/minimum-depth-of-binary-tree/
    思路一:后序遍历

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int minDepth(TreeNode root) {
            if (root == null) return 0;
            int leftDepth = minDepth(root.left);
            int rightDepth = minDepth(root.right);
            if (root.left != null && root.right == null) {
                return 1 + leftDepth;
            }
            if (root.left == null && root.right != null) {
                return 1 + rightDepth;
            }
            return Math.min(leftDepth, rightDepth) + 1;
        }
    }
    

    思路二:前序遍历

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        int result = Integer.MAX_VALUE;
        private void minDepth(TreeNode root, int depth) {
            if (root.left == null && root.right == null) {
                result = result > depth ? depth : result;
                return;
            }
            if (root.left != null) {
                minDepth(root.left, depth + 1);
            }
            if (root.right != null) {
                minDepth(root.right, depth + 1);
            }
        }
        public int minDepth(TreeNode root) {
            if (root == null) return 0;
            minDepth(root, 1);
            return result;
        }
    }
    

    思路三:层序遍历

    /**r
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int minDepth(TreeNode root) {
            if (root == null) return 0;
            int depth = 0;
            Queue<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                int size = queue.size();
                depth++;
                while (size-- > 0) {
                    TreeNode treeNode = queue.poll();
                    if (treeNode.left == null && treeNode.right == null) return depth;
                    if (treeNode.left != null) queue.offer(treeNode.left);
                    if (treeNode.right != null) queue.offer(treeNode.right);
                }
            }
            return depth;
        }
    }
    

    四、 222. 完全二叉树的节点个数

    题目链接:https://leetcode.cn/problems/count-complete-tree-nodes/
    思路一、当作一个普通的二叉树可使用后序、层序等

    //后序迭代法
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int countNodes(TreeNode root) {
            if (root == null) return 0;
            int leftCount = countNodes(root.left);
            int rigthCount = countNodes(root.right);
            return leftCount + rigthCount + 1;
        }
    }
    
    //层序遍历
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int countNodes(TreeNode root) {
            if (root == null) return 0;
            int result = 0;
            Queue<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                int size = queue.size();
                while (size-- > 0) {
                    result++;
                    TreeNode treeNode = queue.poll();
                    if (treeNode.left != null) queue.offer(treeNode.left);
                    if (treeNode.right != null) queue.offer(treeNode.right);
                }
            }
            return result;
        }
    }
    

    思路二、使用后序遍历,并利用完全二叉树特性

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int countNodes(TreeNode root) {
            if (root == null) return 0;
            TreeNode leftNode = root.left;
            TreeNode rightNode = root.right;
            int leftCount = 0;
            int rightCount = 0;
            while (leftNode != null) {
                leftNode = leftNode.left;
                leftCount++;
            }
            while (rightNode != null) {
                rightNode = rightNode.right;
                rightCount++;
            }
            if (leftCount == rightCount) {
                return (2 << leftCount) - 1;
            } 
            leftCount = countNodes(root.left);
            rightCount = countNodes(root.right);
            return leftCount + rightCount + 1;
        }
    }
    

    相关文章

      网友评论

          本文标题:算法|二叉树的最大最小深度、完全二叉树个数

          本文链接:https://www.haomeiwen.com/subject/zgksfdtx.html