美文网首页神经网络与深度学习
PyTorch深度学习笔记(7):应用实例--FashionMN

PyTorch深度学习笔记(7):应用实例--FashionMN

作者: 陆仔的自在生活 | 来源:发表于2023-05-31 22:20 被阅读0次

在上一篇文章中,我们介绍了如何用梯度下降法进行神经网络的训练与优化。现在我们用一个实际的数据集:FashionMNIST,完整的实现构建神经网络并训练优化,在这一过程中,我们将会对神经网络建模并解决实际问题有个初步的了解。

FashionMNIST 数据集

FashionMNIST 是一个衣物图像数据集,包含60000个样本的训练集以及10000个样本的测试集。样本分为10类标签:T-Shirt/Top(T恤),Trouser(裤子),Pullover(套衫),Dress(连衣裙),Coat(大衣),Sandals(凉鞋),Shirt(衬衣),Sneaker(运动鞋),Bag(包),Ankle boots(踝靴)。每个样本都是28*28的灰度图像。

在Pytorch中,我们可以使用 torchvision.datasets 来导入 FashionMNIST 数据集。

import torchvision
import torchvision.transforms as transforms

mnist = torchvision.datasets.FashionMNIST(
    root = "./data"
    , train=True # 使用训练数据集
    , download=False 
    , transform=transforms.ToTensor() # 将数据转换为Tensor
    )

mnist
# 代码结果如下:
> Dataset FashionMNIST
    Number of datapoints: 60000
    Root location: ./data
    Split: Train
    StandardTransform
  Transform: ToTensor()

查看mnist第一个样本:

mnist[0]
# 代码结果如下:
> (tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.0510,
           0.2863, 0.0000, 0.0000, 0.0039, 0.0157, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0039, 0.0039, 0.0000],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0118, 0.0000, 0.1412, 0.5333,
           0.4980, 0.2431, 0.2118, 0.0000, 0.0000, 0.0000, 0.0039, 0.0118,
           0.0157, 0.0000, 0.0000, 0.0118],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0235, 0.0000, 0.4000, 0.8000,
           0.6902, 0.5255, 0.5647, 0.4824, 0.0902, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0471, 0.0392, 0.0000],
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
...
          [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
           0.0000, 0.0000, 0.0000, 0.0000]]]),
 9)
    

我们可以用.data查看样本的特征张量:

mnist.data[0]
# 代码结果如下:
> tensor([[  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
           0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
           0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
           0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   1,   0,
           0,  13,  73,   0,   0,   1,   4,   0,   0,   0,   0,   1,   1,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   3,   0,
          36, 136, 127,  62,  54,   0,   0,   0,   1,   3,   4,   0,   0,   3],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   6,   0,
         102, 204, 176, 134, 144, 123,  23,   0,   0,   0,   0,  12,  10,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         155, 236, 207, 178, 107, 156, 161, 109,  64,  23,  77, 130,  72,  15],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   1,   0,  69,
         207, 223, 218, 216, 216, 163, 127, 121, 122, 146, 141,  88, 172,  66],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   1,   1,   1,   0, 200,
         232, 232, 233, 229, 223, 223, 215, 213, 164, 127, 123, 196, 229,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 183,
         225, 216, 223, 228, 235, 227, 224, 222, 224, 221, 223, 245, 173,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 193,
         228, 218, 213, 198, 180, 212, 210, 211, 213, 223, 220, 243, 202,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   1,   3,   0,  12, 219,
         220, 212, 218, 192, 169, 227, 208, 218, 224, 212, 226, 197, 209,  52],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   6,   0,  99, 244,
...
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
           0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
        [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
           0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0]],
       dtype=torch.uint8)

注意:虽然 mnist[0][0]mnist.data[0] 都可以获得第一个样本的特征张量,但他们的维度不同:

mnist[0][0].shape

torch.Size([1, 28, 28])

mnist.data[0].shape

torch.Size([28, 28])

我们可以用.targets查看样本的标签:

mnist.targets[0:5]

tensor([9, 0, 0, 3, 0])

我们可以将数据集中的图像可视化:

import matplotlib.pyplot as plt
from IPython import display
import numpy as np

def get_text_label(labels):
    text_label = ["T-Shirt/Top"
                  ,"Trouser"
                  ,"Pullover"
                  ,"Dress"
                  ,"Coat"
                  ,"Sandals"
                  ,"Shirt"
                  ,"Sneaker"
                  ,"Bag"
                  ,"Ankle boots"
                  ]
    out = [text_label[int(i)] for i in labels]
    return out

def show_fashion_mnist(images, labels):
    display.set_matplotlib_formats("svg")
    _, figs = plt.subplots(1, len(images), figsize=(12,12))
    # _ 表示我们不使用的变量

    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28,28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()

images, labels = [], []
for i in range(5):
    images.append(mnist[i][0])
    labels.append(mnist[i][1])

show_fashion_mnist(images, get_text_label(labels))
L11_003.png

构建神经网络并使用梯度下降法训练优化

1)导入所需的库

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torch.optim as optim
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader

2)构建神经网络

这里我们构建一个简单的全连接神经网络:第一层有128个神经元,激活函数是ReLU,第二层是输出层。

class Model(nn.Module):
    
    def __init__(self, in_features=3, out_features=10):
        super(Model, self).__init__()
        self.linear1 = nn.Linear(in_features, 128, bias=False)
        self.output = nn.Linear(128, out_features, bias=False)

    def forward(self, x):
        x = x.view(-1, 28*28)
        sigma1 = torch.relu(self.linear1(x))
        z_hat = self.output(sigma1)
        # log_sigma2 = torch.log_softmax(z_hat, dim=1)
        return z_hat

3)定义训练函数

def fit(net, batchdata, lr=0.01, gamma=0.9, epochs=5):
    criterion = CrossEntropyLoss()
    opt = optim.SGD(net.parameters(), lr=lr, momentum=gamma)
    correct = 0 
    samples = 0

    for i_epoch in range(epochs):
        for i_batch, (xb, yb) in enumerate(batchdata):
            yb = yb.view(xb.shape[0])
            opt.zero_grad() # 清空梯度
            z_hat = net.forward(xb)
            loss = criterion(z_hat, yb)
            loss.backward()
            opt.step()

            # 计算准确率
            y_hat = torch.max(z_hat, dim=1)[1] 
            # softmax/logsoftmax函数对z_hat是单调递增的,因此对比z_hat的值也可以获得y_hat 
            correct += torch.sum(y_hat==yb)
            samples += xb.shape[0]
            
            # 打印进度及准确率
            if (i_batch+1) % 125 == 0 or i_batch == len(batchdata)-1:
                print("Epoch{}: [{}/{}({:.0f}%)] \t Loss: {:.6f} \t Accuracy:{:.3f}".format(
                       i_epoch+1
                       , samples
                       , len(batchdata.dataset)*epochs
                       , 100*samples/(len(batchdata.dataset)*epochs)
                       , loss.data.item()
                       , float(100*correct/samples)
                       )
                      )

4)进行模型训练

lr = 0.15
gamma = 0
epochs = 10
bs = 128

batchdata = DataLoader(mnist, batch_size=bs, shuffle=True)

input_ = mnist.data[0].numel() # 查看一个样本共有多少个特征
output_ = len(mnist.targets.unique())

torch.manual_seed(531)
net = Model(input_, output_)
fit(net, batchdata, lr=lr, gamma=gamma, epochs=epochs)

训练结果打印如下:

Epoch1: [16000/600000(3%)]   Loss: 0.610511      Accuracy:65.381
Epoch1: [32000/600000(5%)]   Loss: 0.608885      Accuracy:71.034
Epoch1: [48000/600000(8%)]   Loss: 0.472458      Accuracy:73.779
Epoch1: [60000/600000(10%)]      Loss: 0.441551      Accuracy:75.440
Epoch2: [76000/600000(13%)]      Loss: 0.437011      Accuracy:76.824
Epoch2: [92000/600000(15%)]      Loss: 0.399695      Accuracy:77.800
Epoch2: [108000/600000(18%)]     Loss: 0.472766      Accuracy:78.640
Epoch2: [120000/600000(20%)]     Loss: 0.320962      Accuracy:79.250
Epoch3: [136000/600000(23%)]     Loss: 0.388086      Accuracy:79.923
Epoch3: [152000/600000(25%)]     Loss: 0.462663      Accuracy:80.452
Epoch3: [168000/600000(28%)]     Loss: 0.465469      Accuracy:80.903
Epoch3: [180000/600000(30%)]     Loss: 0.380975      Accuracy:81.149
Epoch4: [196000/600000(33%)]     Loss: 0.271844      Accuracy:81.539
Epoch4: [212000/600000(35%)]     Loss: 0.367284      Accuracy:81.840
Epoch4: [228000/600000(38%)]     Loss: 0.505810      Accuracy:82.173
Epoch4: [240000/600000(40%)]     Loss: 0.463632      Accuracy:82.372
Epoch5: [256000/600000(43%)]     Loss: 0.344181      Accuracy:82.652
Epoch5: [272000/600000(45%)]     Loss: 0.363755      Accuracy:82.883
Epoch5: [288000/600000(48%)]     Loss: 0.437372      Accuracy:83.074
Epoch5: [300000/600000(50%)]     Loss: 0.415565      Accuracy:83.233
Epoch6: [316000/600000(53%)]     Loss: 0.411210      Accuracy:83.421
Epoch6: [332000/600000(55%)]     Loss: 0.282166      Accuracy:83.599
Epoch6: [348000/600000(58%)]     Loss: 0.199532      Accuracy:83.764
Epoch6: [360000/600000(60%)]     Loss: 0.287607      Accuracy:83.876
Epoch7: [376000/600000(63%)]     Loss: 0.237670      Accuracy:84.042
...
Epoch10: [556000/600000(93%)]    Loss: 0.357069      Accuracy:85.374
Epoch10: [572000/600000(95%)]    Loss: 0.379821      Accuracy:85.481
Epoch10: [588000/600000(98%)]    Loss: 0.388706      Accuracy:85.568
Epoch10: [600000/600000(100%)]   Loss: 0.206537      Accuracy:85.629

可以看出,在整个训练过程中,损失函数有所波动,但是准确率是在不断提升的,当训练结束时,我们的算法准确率从最开始的65%提升到了85%。目前,成熟的算法在 FashionMNIST 数据集上的准确率可以很轻松的达到99%。不过,我们这里的目的是初步体验神经网络从构建到优化的整个过程,所以将不再对提升准确率做更多的尝试,当然,神经网络的调优还涉及到其他很多方面,在后续的文章的我们会逐一进行介绍。

完整代码

整个过程的完整代码如下:

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torch.optim as optim
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader

import torchvision
import torchvision.transforms as transforms

import matplotlib.pyplot as plt
from IPython import display
import numpy as np

lr = 0.15
gamma = 0
epochs = 10
bs = 128

mnist = torchvision.datasets.FashionMNIST(
    root = "./data"
    , train=True # 使用训练数据集
    , download=False 
    , transform=transforms.ToTensor() # 将数据转换为Tensor
    )

batchdata = DataLoader(mnist, batch_size=bs, shuffle=True)

input_ = mnist.data[0].numel() # 查看一个样本共有多少个特征
output_ = len(mnist.targets.unique())


class Model(nn.Module):
    
    def __init__(self, in_features=3, out_features=10):
        super(Model, self).__init__()
        self.linear1 = nn.Linear(in_features, 128, bias=False)
        self.output = nn.Linear(128, out_features, bias=False)

    def forward(self, x):
        x = x.view(-1, 28*28)
        sigma1 = torch.relu(self.linear1(x))
        z_hat = self.output(sigma1)
        # log_sigma2 = torch.log_softmax(z_hat, dim=1)
        return z_hat
    

def fit(net, batchdata, lr=0.01, gamma=0.9, epochs=5):
    criterion = CrossEntropyLoss()
    opt = optim.SGD(net.parameters(), lr=lr, momentum=gamma)
    correct = 0 
    samples = 0

    for i_epoch in range(epochs):
        for i_batch, (xb, yb) in enumerate(batchdata):
            yb = yb.view(xb.shape[0])
            opt.zero_grad() # 清空梯度
            z_hat = net.forward(xb)
            loss = criterion(z_hat, yb)
            loss.backward()
            opt.step()

            # 计算准确率
            y_hat = torch.max(z_hat, dim=1)[1] 
            # softmax/logsoftmax函数对z_hat是单调递增的,因此对比z_hat的值也可以获得y_hat 
            correct += torch.sum(y_hat==yb)
            samples += xb.shape[0]

            if (i_batch+1) % 125 == 0 or i_batch == len(batchdata)-1:
                print("Epoch{}: [{}/{}({:.0f}%)] \t Loss: {:.6f} \t Accuracy:{:.3f}".format(
                       i_epoch+1
                       , samples
                       , len(batchdata.dataset)*epochs
                       , 100*samples/(len(batchdata.dataset)*epochs)
                       , loss.data.item()
                       , float(100*correct/samples)
                       )
                      )

torch.manual_seed(531)
net = Model(input_, output_)
fit(net, batchdata, lr=lr, gamma=gamma, epochs=epochs)

相关文章

网友评论

    本文标题:PyTorch深度学习笔记(7):应用实例--FashionMN

    本文链接:https://www.haomeiwen.com/subject/zomyedtx.html