TensorFlow和Keras解决大数据量内存溢出问题

作者: 刘开心_8a6c | 来源:发表于2018-04-14 17:23 被阅读258次

内存溢出问题是参加kaggle比赛或者做大数据量实验的第一个拦路虎。

以前做的练手小项目导致新手产生一个惯性思维——读取训练集图片的时候把所有图读到内存中,然后分批训练。

其实这是有问题的,很容易导致OOM。现在内存一般16G,而训练集图片通常是上万张,而且RGB图,还很大,VGG16的图片一般是224x224x3,上万张图片,16G内存根本不够用。这时候又会想起——设置batch,但是那个batch的输入参数却又是图片,它只是把传进去的图片分批送到显卡,而我OOM的地方恰是那个“传进去”的图片,怎么办?

解决思路其实说来也简单,打破思维定式就好了,不是把所有图片读到内存中,而是只把所有图片的路径一次性读到内存中。

大致的解决思路为:

将上万张图片的路径一次性读到内存中,自己实现一个分批读取函数,在该函数中根据自己的内存情况设置读取图片,只把这一批图片读入内存中,然后交给模型,模型再对这一批图片进行分批训练,因为内存一般大于等于显存,所以内存的批次大小和显存的批次大小通常不相同。

下面代码分别介绍Tensorflow和Keras分批将数据读到内存中的关键函数。Tensorflow对初学者不太友好,所以我个人现阶段更习惯用它的高层API Keras来做相关项目,下面的TF实现是之前不会用Keras分批读时候参考的一些列资料,在模型训练上仍使用Keras,只有分批读取用了TF的API。

Tensorlow

在input.py里写get_batch函数。

def get_batch(X_train, y_train, img_w, img_h, color_type, batch_size, capacity):
    '''
    Args:
        X_train: train img path list
        y_train: train labels list
        img_w: image width
        img_h: image height
        batch_size: batch size
        capacity: the maximum elements in queue
    Returns:
        X_train_batch: 4D tensor [batch_size, width, height, chanel],\
                        dtype=tf.float32
        y_train_batch: 1D tensor [batch_size], dtype=int32
    '''
    X_train = tf.cast(X_train, tf.string)

    y_train = tf.cast(y_train, tf.int32)
    
    # make an input queue
    input_queue = tf.train.slice_input_producer([X_train, y_train])

    y_train = input_queue[1]
    X_train_contents = tf.read_file(input_queue[0])
    X_train = tf.image.decode_jpeg(X_train_contents, channels=color_type)

    X_train = tf.image.resize_images(X_train, [img_h, img_w], 
                                     tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    X_train_batch, y_train_batch = tf.train.batch([X_train, y_train],
                                                  batch_size=batch_size,
                                                  num_threads=64,
                                                  capacity=capacity)
    y_train_batch = tf.one_hot(y_train_batch, 10)

    return X_train_batch, y_train_batch

在train.py文件中训练(下面不是纯TF代码,model.fit是Keras的拟合,用纯TF的替换就好了)。

X_train_batch, y_train_batch = inp.get_batch(X_train, y_train, 
                                             img_w, img_h, color_type, 
                                             train_batch_size, capacity)
X_valid_batch, y_valid_batch = inp.get_batch(X_valid, y_valid, 
                                             img_w, img_h, color_type, 
                                             valid_batch_size, capacity)
with tf.Session() as sess:

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    try:
        for step in np.arange(max_step):
            if coord.should_stop() :
                break
            X_train, y_train = sess.run([X_train_batch, 
                                             y_train_batch])
            X_valid, y_valid = sess.run([X_valid_batch,
                                             y_valid_batch])
              
            ckpt_path = 'log/weights-{val_loss:.4f}.hdf5'
            ckpt = tf.keras.callbacks.ModelCheckpoint(ckpt_path, 
                                                      monitor='val_loss', 
                                                      verbose=1, 
                                                      save_best_only=True, 
                                                      mode='min')
            model.fit(X_train, y_train, batch_size=64, 
                          epochs=50, verbose=1,
                          validation_data=(X_valid, y_valid),
                          callbacks=[ckpt])
            
            del X_train, y_train, X_valid, y_valid

    except tf.errors.OutOfRangeError:
        print('done!')
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()

Keras

keras文档中对fit、predict、evaluate这些函数都有一个generator,这个generator就是解决分批问题的。

关键函数:fit_generator

# 读取图片函数
def get_im_cv2(paths, img_rows, img_cols, color_type=1, normalize=True):
    '''
    参数:
        paths:要读取的图片路径列表
        img_rows:图片行
        img_cols:图片列
        color_type:图片颜色通道
    返回: 
        imgs: 图片数组
    '''
    # Load as grayscale
    imgs = []
    for path in paths:
        if color_type == 1:
            img = cv2.imread(path, 0)
        elif color_type == 3:
            img = cv2.imread(path)
        # Reduce size
        resized = cv2.resize(img, (img_cols, img_rows))
        if normalize:
            resized = resized.astype('float32')
            resized /= 127.5
            resized -= 1. 
        
        imgs.append(resized)
        
    return np.array(imgs).reshape(len(paths), img_rows, img_cols, color_type)

获取批次函数,其实就是一个generator

def get_train_batch(X_train, y_train, batch_size, img_w, img_h, color_type, is_argumentation):
    '''
    参数:
        X_train:所有图片路径列表
        y_train: 所有图片对应的标签列表
        batch_size:批次
        img_w:图片宽
        img_h:图片高
        color_type:图片类型
        is_argumentation:是否需要数据增强
    返回: 
        一个generator,x: 获取的批次图片 y: 获取的图片对应的标签
    '''
    while 1:
        for i in range(0, len(X_train), batch_size):
            x = get_im_cv2(X_train[i:i+batch_size], img_w, img_h, color_type)
            y = y_train[i:i+batch_size]
            if is_argumentation:
                # 数据增强
                x, y = img_augmentation(x, y)
            # 最重要的就是这个yield,它代表返回,返回以后循环还是会继续,然后再返回。就比如有一个机器一直在作累加运算,但是会把每次累加中间结果告诉你一样,直到把所有数加完
            yield({'input': x}, {'output': y})

训练函数

result = model.fit_generator(generator=get_train_batch(X_train, y_train, train_batch_size, img_w, img_h, color_type, True), 
          steps_per_epoch=1351, 
          epochs=50, verbose=1,
          validation_data=get_train_batch(X_valid, y_valid, valid_batch_size,img_w, img_h, color_type, False),
          validation_steps=52,
          callbacks=[ckpt, early_stop],
          max_queue_size=capacity,
          workers=1)

就是这么简单。但是当初从0到1的过程很难熬,每天都没有进展,没有头绪,急躁占据了思维的大部,熬过了这个阶段,就会一切顺利,不是运气,而是踩过的从0到1的每个脚印累积的灵感的爆发,从0到1的脚印越多,后面的路越顺利。


以上内容来自822实验室神经网络知识分享
我们的822,我们的青春
欢迎所有热爱知识热爱生活的朋友和822思享实验室一起成长,吃喝玩乐,享受知识。

相关文章

网友评论

  • 372484ae8fc7:我最近在写图像识别的代码,碰到了您所说的问题,但是我在最后也是碰到了3楼所说的问题,说我并没有提供数据给我的第一层卷积神经网络,还是在调用model.fit_generator函数时没有同意,期待您的回复
  • 玲珑_起舞:您好,您的文章的确很有启发,我想请教您,我按照您的方法产生了generator,但是,在model.fit_generator的时候报错,说是"No data provided for "Conv1_input". Need data for each key in: ['Conv1_input']",可是我看到generator中的确是有数据的,cnn中的input shape也和generator中的一样,不知道哪里出了问题.您可以指导下吗?谢谢!
    刘开心_8a6c:@秦佳奇 这个问题就是把模型第一层起一个名称,然后把yield里面input改成对应的名称就行了,很多人都问我这个问题,错都是层命名导致的
    3482d21cee37:你好 这个问题解决了么?
    刘开心_8a6c:@玲珑_起舞 看样子像是name设置的不统一的问题,比如 你在yield里面用了conv1 input这个name,但是model的input层却没有给它name,或者是其他name。你检查一下各个层的命名。如果没有解决问题,方便的话我看看代码
  • mmp1994:获取批次函数会越界吧
    刘开心_8a6c:@lsh呵呵 这就是我说的。比如10个数的数组 每次取三个 切片x[9:12] 会取到一个元素 不是三个元素 所以不会越界 你写个小程序测一下就知道了
    mmp1994:@刘开心_8a6c
    x = get_im_cv2(X_train[i:i+batch_size], img_w, img_h, color_type)
    y = y_train[i:i+batch_size]
    刘开心_8a6c:@lsh呵呵 不会 比如1-10 每批3张图 最后一批就是1张

本文标题:TensorFlow和Keras解决大数据量内存溢出问题

本文链接:https://www.haomeiwen.com/subject/zrchkftx.html