美文网首页大数据,机器学习,人工智能
Spark入门教程(六)弹性分布式数据集Rdd的Action操作

Spark入门教程(六)弹性分布式数据集Rdd的Action操作

作者: 胖滚猪学编程 | 来源:发表于2018-02-20 10:32 被阅读0次

本文全部手写原创,请勿复制粘贴、转载请注明出处,谢谢配合!

Action操作和Transformation操作的区别


  • 惰性求值:Action操作会触发实际的计算,而Transformation是没有触发实际计算的,是惰性求值的(见下一篇博客)

  • 返回类型:Transformation操作是一个RDD转化为一个新的RDD,即返回RDD,而Action操作返回其他数据类型。

  • 输出结果:Action操作会有实际结果的输出,向驱动器程序返回结果或者把结果写入外部系统。Transformation并无实际输出。

Action操作常用函数


  • reduce(func) 根据函数规则对数据集进行整合

  • count() 返回元素个数

  • first() 返回第一个元素

  • collect() 返回数据集所有元素,注意内存溢出问题,只有当你的整个数据集在单台机器中内存放得下时才使用

  • top(n) 按默认或指定排序返回前n个元素,默认按降序

  • take(n) 返回前n个元素

scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[51] at parallelize at <console>:24

scala> rdd.reduce(_+_)
res25: Int = 55

scala> rdd.count()
res26: Long = 10

scala> rdd.first()
res27: Int = 1

scala> rdd.collect()
res28: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> rdd.take(5)
res29: Array[Int] = Array(1, 2, 3, 4, 5)
  • saveAsTextFile(path) 存储最后结果到文件系统中
    scala> rdd.map(x=>(x,1)).saveAsTextFile("hdfs://master/user/out1")
  • countByKey() 分别计算每个Key的个数
scala> val rdd = sc.parallelize(List(("spark",3),("spark",2),("hello",2)))
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[56] at parallelize at <console>:24

scala> rdd.countByKey()
res40: scala.collection.Map[String,Long] = Map(spark -> 2, hello -> 1)
  • aggregate聚合函数

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

意思是说,对于每个分区的元素,进行某种操作seqOp: (U, T) ⇒ U,然后聚合这些分区的元素,combOp: (U, U) ⇒ U,(zeroValue: U)是一个初始值。看案例解释比较清楚:

scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[49] at parallelize at <console>:24

scala> rdd.aggregate(1)((x,y)=>x+y,(a,b)=>(a*b))
res23: Int = 656

1,2,3,4,5,6,7,8,9,10分成了两个区

分区一:1,2,3,4,5 进行(x,y)=>x+y 注意有初始值1 即1+1+2+3+4+5=16

分区二:6,7,8,9,10 进行(x,y)=>x+y 注意有初始值1 即 1+6+7+8+9+10=41

对这两个分区的结果16和41 进行(a,b)=>ab 即1641=656

更多函数请参考spark API,看API永远是最好的学习方式没有之一。

相关文章

  • Spark数据操作—RDD操作

    Spark RDD操作 RDD(Resilient Distributed Dataset),弹性分布式数据集是一...

  • 第三章 RDD编程

    RDD(弹性分布式数据集)是Spark的核心概念,Spark在对数据进行操作时,不外乎创建RDD,转化RDD以及调...

  • 一些Spark知识点记录

    Spark RDD: 弹性分布式数据集 (Resilient Distributed DataSet) RDD的三...

  • [译]Spark编程指南(二)

    弹性分布式数据集(RDDs) Spark围绕着弹性分布式数据集(RDD)这个概念,RDD是具有容错机制的元素集合,...

  • 从零开始学习Spark(三)RDD编程

    RDD编程 RDD (Resilient Distributed Dataset 弹性分布式数据集)是Spark中...

  • Spark之RDD基础学习

    一、RDD概念 RDD(Resilient Distributed Dataset):弹性分布式数据集,Spark...

  • Spark学习笔记(1)RDD

    RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最...

  • pyspark--RDD基本操作

    spark中的RDD是一个核心概念,RDD是一种弹性分布式数据集,spark计算操作都是基于RDD进行的,本文介绍...

  • 面试 | Spark知识点@20190103

    RDD、DataFrame和DataSet RDD是Spark最早的数据模型,叫做弹性分布式数据集。它是Spark...

  • Spark RDD API

    1、RDD RDD(Resilient Distributed Dataset弹性分布式数据集)是Spark中抽象...

网友评论

    本文标题:Spark入门教程(六)弹性分布式数据集Rdd的Action操作

    本文链接:https://www.haomeiwen.com/subject/zzbitftx.html