从数据结构角度
1、B+树索引
2、hash索引
3、FULLTEXT索引(InnoDB引擎5.7以后支持)
4、R-Tree索引(用于对GIS数据类型创建SPATIAL索引)
问题:这些索引的区别跟用途在哪?B+树相比hash的优点在哪?
从物理存储角度
1、聚簇索引(clustered index)
2、非聚簇索引(non-clustered index)
问题:实现方式有什么差异?
从逻辑角度
- 普通索引index :加速查找
- 唯一索引
主键索引:primary key :加速查找+约束(不为空且唯一)
唯一索引:unique:加速查找+约束 (唯一) - 联合索引
-primary key(id,name):联合主键索引
-unique(id,name):联合唯一索引
-index(id,name):联合普通索引 - 全文索引fulltext :用于搜索很长一篇文章的时候,效果最好。
- 空间索引spatial :了解就好,几乎不用
问题:多列索引有什么命中规则?这几种索引对加锁有什么影响?
在《数据库原理》一书中是这么解释聚簇索引和非聚簇索引的区别的:聚簇索引的叶子节点就是数据节点,而非聚簇索引的叶子节点仍然是索引节点,只不过有指向对应数据块的指针。
聚簇索引
聚簇索引(innoDB的主键索引):表数据按照索引的顺序来存储的,也就是说索引项的顺序与表中记录的物理顺序一致。对于聚簇索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页。 在一张表上最多只能创建一个聚簇索引(不包括二级索引,二级索引可以有多个),因为真实数据的物理顺序只能有一种。
"聚簇"指实际的数据行和相关的键值都保存在一起。
聚簇索引的二级索引(innoDB的其他索引):叶子节点不会保存引用的行的物理位置,而是保存了行的主键值
注意:数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的,如果主键不是自增id,那么可以想象,它会干些什么,不断地调整数据的物理地址、分页,当然也有其他一些措施来减少这些操作,但却无法彻底避免。但,如果是自增的,那就简单了,它只需要一页一页地写,索引结构相对紧凑,磁盘碎片少,效率也高。
非聚簇索引
非聚簇索引(MyISAM的所有索引):表数据存储顺序与索引顺序无关。对于非聚簇索引,叶结点包含索引字段值及指向数据页数据行的逻辑指针,其行数量与数据表行数据量一致。
MyISAM的B+Tree的叶子节点上的data,并不是数据本身,而是数据存放的地址。主索引和辅助索引没啥区别,只是主索引中的key一定得是唯一的
因此,MYSQL中不同的数据存储引擎对聚簇索引的支持不同就很好解释了。下面,我们可以看一下MYSQL中MYISAM和INNODB两种引擎的索引结构。
如原始数据为:
id | col1 | col2 |
---|---|---|
0 | 99 | 8 |
1 | 12 | 56 |
2 | 3000 | 62 |
... | ... | ... |
9997 | 18 | 8 |
9998 | 4700 | 13 |
9999 | 3 | 93 |
MyISAM引擎的数据存储方式如图:
image.png
MYISAM是按列值与行号来组织索引的。它的叶子节点中保存的实际上是指向存放数据的物理块的指针。从MYISAM存储的物理文件我们能看出,MYISAM引擎的索引文件(.MYI)和数据文件(.MYD)是相互独立的。
而InnoDB按聚簇索引的形式存储数据,所以它的数据布局有着很大的不同。它存储数据的结构大致如下:
image.png
注:聚簇索引中的每个叶子节点包含主键值、事务ID、回滚指针(rollback pointer用于事务和MVCC)和余下的列(如col2)。
INNODB的二级索引与主键索引有很大的不同。InnoDB的二级索引的叶子包含主键值,而不是行指针(row pointers),这减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针。其结构大致如下:
image.png
INNODB和MYISAM的主键索引与二级索引的对比:
image.png
InnoDB的的二级索引的叶子节点存放的是KEY字段加主键值。因此,通过二级索引查询首先查到是主键值,然后InnoDB再根据查到的主键值通过主键索引找到相应的数据块。而MyISAM的二级索引叶子节点存放的还是列值与行号的组合,叶子节点中保存的是数据的物理地址。所以可以看出MYISAM的主键索引和二级索引没有任何区别,主键索引仅仅只是一个叫做PRIMARY的唯一、非空的索引,且MYISAM引擎中可以不设主键。
为了更形象说明这两种索引的区别,我们假想一个表如下图存储了4行数据。其中Id作为主索引,Name作为辅助索引。图示清晰的显示了聚簇索引和非聚簇索引的差异。
对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。
InnoDB使用的是聚簇索引,将主键组织到一棵B+树中,而行数据就储存在叶子节点上,若使用"where id = 14"这样的条件查找主键,则按照B+树的检索算法即可查找到对应的叶节点,之后获得行数据。若对Name列进行条件搜索,则需要两个步骤:第一步在辅助索引B+树中检索Name,到达其叶子节点获取对应的主键。第二步使用主键在主索引B+树种再执行一次B+树检索操作,最终到达叶子节点即可获取整行数据。
MyISM使用的是非聚簇索引,非聚簇索引的两棵B+树看上去没什么不同,节点的结构完全一致只是存储的内容不同而已,主键索引B+树的节点存储了主键,辅助键索引B+树存储了辅助键。表数据存储在独立的地方,这两颗B+树的叶子节点都使用一个地址指向真正的表数据,对于表数据来说,这两个键没有任何差别。由于索引树是独立的,通过辅助键检索无需访问主键的索引树。
为了更形象说明这两种索引的区别,我们假想一个表如下图存储了4行数据。其中Id作为主索引,Name作为辅助索引。图示清晰的显示了聚簇索引和非聚簇索引的差异。
image.png我们重点关注聚簇索引,看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?
1 由于行数据和叶子节点存储在一起,这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。
2 辅助索引使用主键作为"指针" 而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个"指针"。也就是说行的位置(实现中通过16K的Page来定位,后面会涉及)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。
网友评论