1.png关于图的几个概念定义:
连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。
强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。
连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。
1.Kruskal算法
2.png此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
- 把图中的所有边按代价从小到大排序;
- 把图中的n个顶点看成独立的n棵树组成的森林;
- 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。
- 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。
关键代码
typedef int Status;
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/* 对边集数组Edge结构的定义 */
typedef struct
{
int begin;
int end;
int weight;
}Edge ;
/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=15;
G->numVertexes=9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j] = G->arc[j][i] = INFINITYC;
}
}
G->arc[0][1]=10;
G->arc[0][5]=11;
G->arc[1][2]=18;
G->arc[1][8]=12;
G->arc[1][6]=16;
G->arc[2][8]=8;
G->arc[2][3]=22;
G->arc[3][8]=21;
G->arc[3][6]=24;
G->arc[3][7]=16;
G->arc[3][4]=20;
G->arc[4][7]=7;
G->arc[4][5]=26;
G->arc[5][6]=17;
G->arc[6][7]=19;
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/* 交换权值以及头和尾 */
void Swapn(Edge *edges,int i, int j)
{
int tempValue;
//交换edges[i].begin 和 edges[j].begin 的值
tempValue = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = tempValue;
//交换edges[i].end 和 edges[j].end 的值
tempValue = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = tempValue;
//交换edges[i].weight 和 edges[j].weight 的值
tempValue = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = tempValue;
}
/* 对权值进行排序 */
void sort(Edge edges[],MGraph *G)
{
//对权值进行排序(从小到大)
int i, j;
for ( i = 0; i < G->numEdges; i++)
{
for ( j = i + 1; j < G->numEdges; j++)
{
if (edges[i].weight > edges[j].weight)
{
Swapn(edges, i, j);
}
}
}
printf("边集数组根据权值排序之后的为:\n");
for (i = 0; i < G->numEdges; i++)
{
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
/* 查找连线顶点的尾部下标 */
//根据顶点f以及parent 数组,可以找到当前顶点的尾部下标; 帮助我们判断2点之间是否存在闭环问题;
int Find(int *parent, int f)
{
while ( parent[f] > 0)
{
f = parent[f];
}
return f;
}
/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
int i, j, n, m;
int sum = 0;
int k = 0;
/* 定义一数组用来判断边与边是否形成环路
用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
int parent[MAXVEX];
/* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
Edge edges[MAXEDGE];
/*1. 用来构建边集数组*/
for ( i = 0; i < G.numVertexes-1; i++)
{
for (j = i + 1; j < G.numVertexes; j++)
{
//如果当前路径权值 != ∞
if (G.arc[i][j]<INFINITYC)
{
//将路径对应的begin,end,weight 存储到edges 边集数组中.
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
//边集数组计算器k++;
k++;
}
}
}
//2. 对边集数组排序
sort(edges, &G);
//3.初始化parent 数组为0. 9个顶点;
// for (i = 0; i < G.numVertexes; i++)
for (i = 0; i < MAXVEX; i++)
parent[i] = 0;
//4. 计算最小生成树
printf("打印最小生成树:\n");
/* 循环每一条边 G.numEdges 有15条边*/
for (i = 0; i < G.numEdges; i++)
{
//获取begin,end 在parent 数组中的信息;
//如果n = m ,将begin 和 end 连接,就会产生闭合的环.
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
//printf("n = %d,m = %d\n",n,m);
/* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
if (n != m)
{
/* 将此边的结尾顶点放入下标为起点的parent中。 */
/* 表示此顶点已经在生成树集合中 */
parent[n] = m;
/*打印最小生成树路径*/
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
sum += edges[i].weight;
}
}
printf("sum = %d\n",sum);
}
2.Prim算法
3.png此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。
图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;
在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。
重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。
由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息。
关键代码
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=15;
G->numVertexes=9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j] = G->arc[j][i] = INFINITYC;
}
}
G->arc[0][1]=10;
G->arc[0][5]=11;
G->arc[1][2]=18;
G->arc[1][8]=12;
G->arc[1][6]=16;
G->arc[2][8]=8;
G->arc[2][3]=22;
G->arc[3][8]=21;
G->arc[3][6]=24;
G->arc[3][7]=16;
G->arc[3][4]=20;
G->arc[4][7]=7;
G->arc[4][5]=26;
G->arc[5][6]=17;
G->arc[6][7]=19;
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/* Prim算法生成最小生成树 */
void MiniSpanTree_Prim(MGraph G)
{
int min, i, j, k;
int sum = 0;
/* 保存相关顶点下标 */
int adjvex[MAXVEX];
/* 保存相关顶点间边的权值 */
int lowcost[MAXVEX];
/* 初始化第一个权值为0,即v0加入生成树 */
/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
lowcost[0] = 0;
/* 初始化第一个顶点下标为0 */
adjvex[0] = 0;
//1. 初始化
for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
//2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
for(i = 1; i < G.numVertexes; i++)
{
/* 初始化最小权值为∞, */
/* 通常设置为不可能的大数字如32767、65535等 */
min = INFINITYC;
j = 1;k = 0;
while(j < G.numVertexes) /* 循环全部顶点 */
{
/* 如果权值不为0且权值小于min */
if(lowcost[j]!=0 && lowcost[j] < min)
{
/* 则让当前权值成为最小值,更新min */
min = lowcost[j];
/* 将当前最小值的下标存入k */
k = j;
}
j++;
}
/* 打印当前顶点边中权值最小的边 */
printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
sum+=G.arc[adjvex[k]][k];
/* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
lowcost[k] = 0;
/* 循环所有顶点,找到与顶点k 相连接的顶点
1. 与顶点k 之间连接;
2. 该结点没有被加入到生成树;
3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
*/
for(j = 1; j < G.numVertexes; j++)
{
/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
/* 将较小的权值存入lowcost相应位置 */
lowcost[j] = G.arc[k][j];
/* 将下标为k的顶点存入adjvex */
adjvex[j] = k;
}
}
}
printf("sum = %d\n",sum);
}
网友评论