Hashtable源码解析

作者: 某昆 | 来源:发表于2018-07-21 14:42 被阅读5次

    1、本文主要内容

    • Hashtable简介
    • Hashtable源码剖析
    • 总结

    今天来总结下 Hashtable,Hashtable是一个线程安全的容器,它实现了Map接口,使用键值对形式来保存元素。

    2、Hashtable简介

    Hashtable与HashMap类似,都是以键值对形式存储元素,但它与HashMap最大的差别即是,Hashtable线程安全,而HashMap非线程安全。而且它们各自的父类也不一样,但都实现了Map接口

    另外Hashtable求元素索引的方式与HashMap稍有不同,或者可以说方法较为粗糙。

    3、Hashtable源码剖析

    public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable {
    
    /**
     * The hash table data.
     */
    //存储数据所用的数组,存储的是entry对象,键值对
    private transient Entry[] table;
    
    /**
     * The total number of entries in the hash table.
     */
    //存储数据的个数,size方法的返回值
    private transient int count;
    
    /**
     * The table is rehashed when its size exceeds this threshold.  (The
     * value of this field is (int)(capacity * loadFactor).)
     *
     * @serial
     */
    //超过这个数就重新hash,要扩容
    private int threshold;
    
    /**
     * The load factor for the hashtable.
     *
     * @serial
     */
    //加载因子
    private float loadFactor;
    
    /**
     * The number of times this Hashtable has been structurally modified
     * Structural modifications are those that change the number of entries in
     * the Hashtable or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the Hashtable fail-fast.  (See ConcurrentModificationException).
     */
    //Hashtable结构性改变的次数
    private transient int modCount = 0;
    
    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = 1421746759512286392L;
    
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
    
        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry[initialCapacity];
        threshold = (int)(initialCapacity * loadFactor);
    }
    
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }
    
    //注意Hashtable默认的数组长度是11
    public Hashtable() {
        this(11, 0.75f);
    }
    
    public Hashtable(Map<? extends K, ? extends V> t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }
    
    //返回当前已存储元素的个数,注意加的同步锁,同步锁为当前的Hashtable对象
    public synchronized int size() {
        return count;
    }
    
    //查看当前Hashtable是否为空,有没有存储元素
    public synchronized boolean isEmpty() {
        return count == 0;
    }
    
    //查看是否包含某个值,同样是同步
    public synchronized boolean contains(Object value) {
        if (value == null) {
            throw new NullPointerException();
        }
    
        Entry tab[] = table;
        //因为Hashtable和HashMap一样,都是使用数组链表的形式来存储数据,如果某个key的hash值一样
        //则数组的索引处将有一个链表,所以需要进行两重循环
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }
    
    public boolean containsValue(Object value) {
        return contains(value);
    }
    
    //查看是否包含某个key,线程安全
    public synchronized boolean containsKey(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        //注意它和Hashmap不一样的地方,直接拿hash值与 0x7FFFFFFF 相与,
        //意味着hash值只丢弃第1位,其它位全部保留,再将值对tab.length求余,得到索引位置
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }
    
    //获取某个key下的值
    public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        //同样的求索引方式,因为是数组链表,所以还需要一次循环来遍历可能存在的链表,得到最终值
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }
    
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
    //重新hash
    protected void rehash() {
        //保存旧的数组以及旧数组的长度
        int oldCapacity = table.length;
        Entry[] oldMap = table;
    
        // overflow-conscious code
        //扩大数组的长度,2倍加1,同时保证新数组长度不超过最大值
        int newCapacity = (oldCapacity << 1) + 1;
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        //生成新数组
        Entry[] newMap = new Entry[newCapacity];
        //改变次数加1,同时重新计算threshold值,并为table赋新值
        modCount++;
        threshold = (int)(newCapacity * loadFactor);
        table = newMap;
        //两重循环遍历旧数组中的所有元素,重新计算索引值,因为数组的长度变化了,索引值也会不一样
        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;
                //重新计算的索引值 
                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                //构成链表,新的元素总是在链表的表头,它的next指向旧的链表头
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }
    
    //线程安全地保存新元素
    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }
    
        // Makes sure the key is not already in the hashtable.
        Entry tab[] = table;
        int hash = key.hashCode();
        //计算新元素的索引值
        int index = (hash & 0x7FFFFFFF) % tab.length;
        //根据已经得到的index值,查看此处可能存在的链表,如果有hash值和key完全一样的元素,则直接替换成新元素
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
            }
        }
    
        modCount++;
        //如果count值大于threshold,则数组扩容重新hash
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();
            tab = table;
            index = (hash & 0x7FFFFFFF) % tab.length;
        }
    
        // Creates the new entry.
        //如果不是对已经元素的更新值,则将新元素放在链表头位置,并且将它的next指向之前的老的链表头节点
        Entry<K,V> e = tab[index];
        tab[index] = new Entry<>(hash, key, value, e);
        count++;
        return null;
    }
    
    //线程安全删除对象
    public synchronized V remove(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        //计算得到索引,然后从链表处遍历
        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                //如果hash值相等并且key相等,直接处理链表间的节点关系,最后将节点置空
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }
    
    public synchronized void putAll(Map<? extends K, ? extends V> t) {
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
            put(e.getKey(), e.getValue());
    }
    
    //清空所有数组
    public synchronized void clear() {
        Entry tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }
    }
    

    4、总结

    其实源码非常简单,目前为止已经分析了多个java容器,只要一查源码,发现其并不神秘,只需要我们都看源码,则它背后的原理就都清楚了。

    后续本博还会继续总结set接口,以及各种阻塞队列,分析阻塞的原理等等

    相关文章

      网友评论

        本文标题:Hashtable源码解析

        本文链接:https://www.haomeiwen.com/subject/aqdhmftx.html