1、本文主要内容
- Vector及LinkedList介绍
- Vector源码解析
- LinkedList源码解析
- 总结
java容器这个系列,虽然较为简单,但本着有始有终的原则,还是必须要写下去。同时感觉一篇只写一个容器,实在有点划水的嫌疑,因此本篇将写两个容器。
2、Vector及LinkedList介绍
Vector、LinkedList以及之前已经介绍的ArrayList属于队列里三个常见的容器。ArrayList是一个可扩容的数组,LinkedList则是以双向链表形式存储元素,而Vector也是一个可扩容数组,不过它是线程安全的。
一般来说,数组适用于随机读取多的场景,插入和删除则比较费劲,需要移动数组。而链表则插入和删除非常高效,读取则需要遍历,效率较低。
3、Vector源码解析
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
/**
* The array buffer into which the components of the vector are
* stored. The capacity of the vector is the length of this array buffer,
* and is at least large enough to contain all the vector's elements.
*
* <p>Any array elements following the last element in the Vector are null.
*
* @serial
*/
//存放数组的数组
protected Object[] elementData;
/**
* The number of valid components in this {@code Vector} object.
* Components {@code elementData[0]} through
* {@code elementData[elementCount-1]} are the actual items.
*
* @serial
*/
//已经存储数组的个数
protected int elementCount;
/**
* The amount by which the capacity of the vector is automatically
* incremented when its size becomes greater than its capacity. If
* the capacity increment is less than or equal to zero, the capacity
* of the vector is doubled each time it needs to grow.
*
* @serial
*/
//当已存储数据的个数大于数组容量时,数组容量以capacityIncrement为单位自动增长,如果capacityIncrement值为0
//则数组容量则增加到两倍
protected int capacityIncrement;
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = -2767605614048989439L;
/**
* Constructs an empty vector with the specified initial capacity and
* capacity increment.
*
* @param initialCapacity the initial capacity of the vector
* @param capacityIncrement the amount by which the capacity is
* increased when the vector overflows
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
//初始化函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
/**
* Constructs an empty vector with the specified initial capacity and
* with its capacity increment equal to zero.
*
* @param initialCapacity the initial capacity of the vector
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
/**
* Constructs an empty vector so that its internal data array
* has size {@code 10} and its standard capacity increment is
* zero.
*/
//默认数组初始化长度为0,capacityIncrement增长级数为0
public Vector() {
this(10);
}
//将vector数组复制到另一个数组当中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
//整理数组的容量到当前长度,因为容量可能大于已存储数据的个数,如果大于就缩小数组长度,去掉不必要的内存占用
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//数组容量增长,如果capacityIncrement大于0,则增长capacityIncrement,反之则数组容量变成现在的两倍
//最后将当前数组内容复制到新的数组
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
//设置size,如果新size大于当前size,则要判断是否需要增长数组容量,如果小于,则newsize及其以后的索引位都要置空
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
//返回数组容量
public synchronized int capacity() {
return elementData.length;
}
//返回已存储元素个数
public synchronized int size() {
return elementCount;
}
//判断是否有存储元素
public synchronized boolean isEmpty() {
return elementCount == 0;
}
//判断是否包含某个元素
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
//求元素索引
public int indexOf(Object o) {
return indexOf(o, 0);
}
//求元素索引的实现。
//如果元素为null,遍历查看数组中哪个元素为空即可
//如果元素不为空,则需要调用equals方法查询,只有equals返回为true才相等
//所以一些自定义对象中,要想在容器中找到此对象 ,一定要重写equals
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//从数组后面寻找索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
//从数组后面寻找索引
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//求索引位置上的元素
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
//返回数组中的第一个元素
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
//返回数组中的最后一个元素
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
//设置某个索引上的元素
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
//删除索引位上的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
//j代表此索引位后面还有几个元素
int j = elementCount - index - 1;
if (j > 0) {
//如果j大于0,需要把索引位后面的元素整体向前挪一位,即复制即可,调用System.arraycopy方法
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
//将索引位上的元素置为空,让系统去回收内存
elementData[elementCount] = null; /* to let gc do its work */
}
//在某个索引位置上插入元素,同样需要确保数组容量足够,并且数组要后移一位,通过复制数组实现
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
//在数组的后边添加一个元素
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
//删除一个特定的元素,先找到此元素的索引,再删除此索引上的元素
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
//删除所有元素
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
//克隆
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector<E> v = (Vector<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
//返回索引位上的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
//设置某索引位上的元素,赋值即可
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
//在数组末尾添加元素
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
//删除元素
public boolean remove(Object o) {
return removeElement(o);
}
public void add(int index, E element) {
insertElementAt(element, index);
}
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return oldValue;
}
public void clear() {
removeAllElements();
}
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}
}
4、LinkedList源码解析
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
//LinkedList的大小
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
//头节点
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
//最后一个节点
transient Node<E> last;
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* Links e as first element.
*/
//添加一个新节点作为头节点
//Node的构造函数,第1个参数是pre指针,最后一个参数是next指针
//新节点将next指针指向之前的first节点,然后自己成为新的first节点
//最后将之前的first节点的pre指向自己。
//也要考虑链表为空的情况,那么新节点也是last节点了
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
//链表大小加1
size++;
modCount++;
}
/**
* Links e as last element.
*/
//添加一个新节点作为last节点
//同样的,新节点先将pre指向指向last节点,再自己成为新的last节点
//最后将之前的last节点的pre指针指向自己
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
/**
* Inserts element e before non-null Node succ.
*/
//在指定的节点前添加一个新节点
//新节点的pre指针指向指定节点的pre指针,next指向指定节点
//最后处理指定节点的pre节点,指定节点自己的指针
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
/**
* Unlinks non-null first node f.
*/
//删除头节点,这个方法传入的f即是头节点,它是私有方法,查看后面代码,参数都为头节点
//清空自己,同时处理头节点的next指针即可
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
/**
* Unlinks non-null last node l.
*/
//删除尾节点,同上
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
/**
* Unlinks non-null node x.
*/
//删除指定节点,因为是双向链表,所以需要处理两个指针,逻辑较为麻烦
//需要考虑特殊情况,如果它是头节点或者它是必节点,每个细节都要考虑到
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
//获取first节点的元素
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
//获取尾节点元素
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
//删除头节点,具体实现前文已经说了
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
//删除尾节点,实现前面也已经解释了
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
//添加一个元素到头节点处
public void addFirst(E e) {
linkFirst(e);
}
//添加一个元素到尾节点处
public void addLast(E e) {
linkLast(e);
}
//是否包含某元素,求其索引,如果索引不为-1,则包含
public boolean contains(Object o) {
return indexOf(o) != -1;
}
//求链表大小
public int size() {
return size;
}
//添加一个元素,如果使用add方法,则默认添加在尾节点处
public boolean add(E e) {
linkLast(e);
return true;
}
//删除指定元素,LinkedList也可以存放空元素
//遍历链表,从头节点开始遍历,一直到最后,也是调用eqauls方法,如果相等则删除此节点
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
//在指定索引上添加一个集合内的所有元素
public boolean addAll(int index, Collection<? extends E> c) {
//先查检索引,索引不能小于0,也不能大于size
checkPositionIndex(index);
//将集合先转变成一个数组,并获取数组的长度,如果长度等于0,则返回
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
//事先定义两个临时变量,succ代表当前索引位置上的节点,pre代表succ的pre节点
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
//获取指定索引位置上的节点succ和其pre节点
succ = node(index);
pred = succ.prev;
}
//新元素要添加在指定的索引位置上,所以需要断开succ和pred现在的关系,只要pred的next指向新节点,并且新节点的pre指向pred即可
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
//构造新节点,新节点的pre指向pred
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
//同时pred的next指向新节点
pred.next = newNode;
//最后将pred向前移一们,设定pred指向新节点
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
//for循环以后,pred代表的是新加入链表的最后一个节点,所以将它的next指向原先的succ
//同时处理succ的prev节点
pred.next = succ;
succ.prev = pred;
}
//size自增numNew
size += numNew;
modCount++;
return true;
}
//清除链表,遍历并且置所有元素为null
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
// Positional Access Operations
//获取指定索引处的节点的value值
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
//设置指定索引处节点的value,node方法在后边有说明
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
//在指定索引处添加一个元素,如果索引等于size,则添加新元素到尾节点,反之则在指定索引之前添加一个新节点
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
//删除指定索引的节点,unlink方法和node方法都有说明
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
//求取在指定索引上的节点
//方法采用了类似二分查找的方法,如果索引值小于size的一半,则从头节点开始寻找,反之则从尾节点开始寻找
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
// Search Operations
//遍历查找某个元素的索引,元素可以为null
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
//从尾节点开始查找某元素的索引值
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
// Queue operations.
//获取头节点的value值
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取头节点value值
public E element() {
return getFirst();
}
//删除头节点,并且返回头节点的value值
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//删除,默认删除的是头节点并且返回头节点的value值
public E remove() {
return removeFirst();
}
//添加新元素,默认添加到尾节点,add方法前文有描述
public boolean offer(E e) {
return add(e);
}
//在头节点处添加新元素
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
//在尾节点处添加新元素
public boolean offerLast(E e) {
addLast(e);
return true;
}
//获取头节点的value值
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//获取尾节点的value值
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
//删除头节点并且返回头节点的value值
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//删除尾节点并且返回头节点的value值
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
//在头节点处添加新元素
public void push(E e) {
addFirst(e);
}
//删除头节点并返回头节点value值
public E pop() {
return removeFirst();
}
//删除指定的元素
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
//注意Node的构造方法的参数顺序,第一个是pre,中间是value,后一个是next
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
}
5、总结
关于List相关的容器已经走读完了,都比较简单,只要肯阅读源码,很多的东西都会变得非常容易。
网友评论