当看到本篇时,根据TensorFlow官方标准《Deep MNIST for Experts》,你已经达到Expert Level,要恭喜了。
且不说是否夸大其词,换一种角度,假如能乘坐时光机仅往回飞5年,借此CNN实现,你也能在ImageNet上叱咤风云,战无不胜。就算飞不回去,它在今天依然是大杀伤力武器,大批大批老算法等着你去枪毙,大片大片垂直领域换代产品等着你去落地。这还不够么?
上一篇4 深入拆解CNN架构准备好了CNN的理论基础,本篇从代码层面,来看看TensorFlow如何搞定CNN,使识别精度达到99%以上。
TensorFlow分析代码的方式
再次说明下分析代码的方式。
与逐行分析代码不同,我偏好先清理代码涉及到的语言、工具的知识点,然后再去扫描逻辑。所以“Python必知必会”、“TensorFlow必知必会”将是首先出现的章节。
当然你也可以直接跳到代码部分:
- tf_2-5_cnn.py:CNN识别MNIST数字,基于官方文档《Deep MNIST for Experts》,略有微调;
- tf_2-5_cnn_fashion_mnist.py:CNN识别Fashion-MNIST;
代码运行环境:
- Python 3.6.2;
- TensorFlow 1.3.0 CPU version;
Python必知必会
With
在本篇所分析的代码中,用到了大量的With
,值得一说。
With
要搭配上下文管理器(Context Manager)对象使用。
所谓的上下文管理器对象,就是实现了上下文管理器协议(Context Manager Protocol)的对象。协议要求对象定义中必须实现__enter__()
和__exit__()
方法。
当看到下面语句时:
With Context Manager Object [as target]:
Body
它有4个意思:
- With块会在
Body
开始前自动调用Context Manager Object的__enter__()
方法; - With块会在
Body
结束前自动调用Context Manager Object的__exit__()
方法,即使Body
还未执行完时发生了异常,__exit__()
也总会被调用; -
Body
中出现异常时,Context Manager Object的__exit__()
执行如果返回False
,异常继续向上层抛出,如果返回True
则该异常被忽略; - 可选的
as target
并非是Context Manager Object本身,而是其调用__enter__()
的返回值;
总的来说,With语句帮助上下文管理器对象实现了两个自动化的操作enter和exit,并充分考虑了异常情况。对于资源类对象(用完需要尽快释放)的使用,比如文件句柄、数据库连接等等,这无疑是一种简洁而完善的代码形式。
如果还想了解更多的细节,推荐阅读一篇老文章《浅谈Python的with语句》。
TensorFlow必知必会
上面说的with
,主要是为了配合TensorFlow的tf.name_scope
。
tf.name_scope
先来体会下我设计的“玩具”代码:
import tensorflow as tf
with tf.name_scope('V1'):
a1 = tf.Variable([50])
a2 = tf.Variable([100], name='a1')
assert a1.name == 'V1/Variable:0'
assert a2.name == 'V1/a1:0'
with tf.name_scope("V2"):
a1 = tf.add(a1, a2, name="Add_Variable_a1")
a2 = tf.multiply(a1, a2, name="Add_Variable_a1")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
assert a1.name == 'V2/Add_Variable_a1:0'
assert sess.run(a1) == 150
assert a2.name == 'V2/Add_Variable_a1_1:0'
assert sess.run(a2) == 15000
a2 = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='V1/a1:0')[0]
assert a2.name == 'V1/a1:0'
可以看到,其中有两类与With
的搭配。
一种是资源类的tf.Session,手工使用时总要记得在使用后调用tf.Session.close方法释放,而与With
搭配使用,则会自动调用其__exit__()
进行释放。
另一种是本节的重点,与With
搭配的并不是“资源”,而是tf.name_scope()
方法返回的对象,此时在With块中定义的节点,都会自动在属性name上添加name scope前缀:
- 通过
tf.Variable
定义的变量节点,其属性name都添加了前缀; - 通过
tf.add
和tf.multiply
定义的运算节点,其属性name也添加了前缀;
注意:通过tf.get_variable
定义的节点,其属性name不受影响,tf.get_variable需要与tf.variable_scope
搭配产生类似效果。
TensorFlow的name scope有什么作用呢?主要是两点:
- 起到名字空间的作用,name scope还可以嵌套,方便管理大规模计算图节点;
- 可视化优化控制,能够生成层次化的计算图,节点可以按照name scope进行折叠,见下图;
如果对上述介绍仍有疑问,请仔细读读下面我为此准备的:
- tf.Variable()返回的a1、a2、a3等等Python变量,是对节点的引用,与节点的name属性没有半毛钱关系;
- Node的name属性是计算图中节点的标识,Python层面的节点引用变量则不是,后者可以随时更改为对其他节点的引用;
- 如果在Python层面失去了对某一节点的引用,节点并没有消失,也不会被自动回收,找回方法见玩具代码倒数第2行;
- 有关TensorFlow计算图(Graph)基本构建单元Node的概念,请回顾《TensorFlow从0到1 - 2 - TensorFlow核心编程》。
CNN架构
扫清了障碍,终于可以开始构建CNN了。
TensorFlow官方《Deep MNIST for Experts》中构建的CNN与LeNet-5的深度规模相当,具有5个隐藏层,但是卷积层滤波器的数量可多了不少:
- 输入层placeholder;
- reshape;
- 隐藏层1:conv1卷积层,32个滤波器;
- 隐藏层2:pool1池化层;
- 隐藏层3:conv2卷积层,64个滤波器;
- 隐藏层4:pool2池化层;
- 隐藏层5:fc1全连接层;
- dropout;
- fc2输出层;
计算下网络中权重的数量:
5x5x1x32 + 5x5x32x64 + 7x7x64x1024 + 1024x10 = 800 + 51200 + 3211264 + 10240 = 3273504
这个并不算深的CNN有三百多万个参数,比之前识别MNIST所用的浅层神经网络,多了两个数量级。不过再仔细看下,两个卷积层包含的权重数量所占比例极小,导致参数量激增的是全连接网络层fc1。
下图是构建好的计算图(Computational Graph),得益于name scope的使用,它能够以“层”为粒度,清晰的显示出网络的骨架:
CNNTensors和Filters
示例代码中,有了更多工程化的考虑,对CNN的构建进行了封装,形成了函数deepnn
,在函数内部,With代码块的使用,使得网络的前馈路径也相当清楚,这部分就不再赘述了。
本节的重点是我们构建的计算图节点上流动的Tensors,以及参与运算的Filters:
- Tensor:4阶,shape形式为:[batch, width, height, channels];
- Filter:4阶,shape形式为:[width, height, channels,F-amount];
deepnn
函数定义如下(省略处用……代替):
def deepnn(x):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
……
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
……
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
with tf.name_scope('dropout'):
……
with tf.name_scope('fc2'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
Tensors-[batch, width, height, channels]:
-
x_image = tf.reshape(x, [-1, 28, 28, 1])
:要将数据输入进二维的卷积网络,首先要进行一次reshape,把[batch, 784]的数据变成[-1, 28, 28, 1],其中batch位填入“-1”可以自适应输入,width和height位为输入图像的原始宽高,最后一位是原始图像的通道数1(灰度图为单通道); -
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
:在将卷积网络的输出数据,输入全连接层时,需要再把数据拉平回一个2阶Tensor;
Filters-[width, height, channels,F-amount]:
-
W_conv1 = weight_variable([5, 5, 1, 32])
:第一卷积层滤波器,width和height位为卷积核的宽高,channels位代表滤波器通道数(匹配输入),最后一位F-amount位代表滤波器的数量为32个(官方文档从输出数据的角度定义其为output channels也颇为合理); -
W_conv2 = weight_variable([5, 5, 32, 64])
:第二卷积层滤波器,仍采用5x5卷积核,具有32个channels,滤波器数量64个;
跨距strides
为防止代码重复,卷积和池化这两项操作也进行了封装,前面缺失的滤波器的跨距(strides)定义,包含在这里。
conv2d
定义:
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
-
strides=[1, 1, 1, 1]
:跨距(strides)默认情况下第一个参数batch与最后一个参数channels都是1,第二位width和第三位height这里也设为1;
max_pool_2x2
定义:
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
-
ksize=[1, 2, 2, 1]
:池化滤波器采用了固定尺寸,池化操作是逐channel进行的,所以默认情况下第一个参数batch与最后一个参数channels都是1,第二位width和第三位height这里设为2,视野范围如一个“田”字; -
strides=[1, 2, 2, 1]
:跨距(strides)默认情况下第一个参数batch与最后一个参数channels都是1,第二位width和第三位height这里设为2,表示从左到右、从上到下以“田”字进行搜索;
滤波器还有一个padding参数,官方文档给出的计算方法见下:
-
padding == 'SAME'
:output_spatial_shape = ceil(input_spatial_shape / strides) -
padding == 'VALID'
:output_spatial_shape = ceil((input_spatial_shape - (spatial_filter_shape-1)) / strides);
测试结果
运行代码进行实测,与TensorFlow官方基本一致:
- MNIST识别达到99.3%,明显超越了浅层神经网络;
- 60次迭代CPU运行时间:4 hours,接近无法忍受,更深的网络必须上GPU了;
相同架构下,基于Fashion MNIST数据集对网络重新进行了训练,验证集识别精度达到了92.64%。CNN的全能型,由此可见一斑。
Fashion MNIST训练过程输出附完整代码
import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
Args:
x: an input tensor with the dimensions (N_examples, 784), where 784 is
the number of pixels in a standard MNIST image.
Returns:
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with
values equal to the logits of classifying the digit into one of 10
classes (the digits 0-9). keep_prob is a scalar placeholder for the
probability of dropout.
"""
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images
# are grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True,
validation_size=10000)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
graph_location = 'MNIST/logs/tf2-4/train'
print('Saving graph to: %s' % graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
best = 0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(60):
for _ in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(
feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
accuracy_validation = accuracy.eval(
feed_dict={
x: mnist.validation.images,
y_: mnist.validation.labels,
keep_prob: 1.0})
print('epoch %d, validation accuracy %s' % (
epoch, accuracy_validation))
best = (best, accuracy_validation)[
best <= accuracy_validation]
# Test trained model
print("best: %s" % best)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='../MNIST/',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
上一篇 4 - 深入拆解CNN架构
共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)
网友评论