TensorFlow从0到1 - 5 - TensorFlow轻

作者: 袁承兴 | 来源:发表于2017-06-13 12:31 被阅读1317次

    TensorFlow从0到1系列回顾

    上一篇 第一个机器学习问题 其实是一个线性回归问题(Linear Regression),呈现了用数据来训练模型的具体方式。本篇从平行世界返回,利用TensorFlow,重新解决一遍该问题。

    TensorFlow的API有低级和高级之分。

    底层的API基于TensorFlow内核,它主要用于研究或需要对模型进行完全控制的场合。如果你想使用TF来辅助实现某个特定算法、呈现和控制算法的每个细节,那么就该使用低级的API。

    高级API基于TensorFlow内核构建,屏蔽了繁杂的细节,适合大多数场景下使用。如果你有一个想法要验证并快速获得结果,那么TF的高级API就是高效的构建工具。

    本篇使用TF的低级API来呈现线性回归的每一个步骤。

    线性回归

    第一个机器学习的TF实现

    TensorFlow的计算分为两个阶段:

    • 构建计算图;
    • 执行计算图。

    先给出“平行世界”版本,(a, b)初始值为(-1, 50),第二次尝试(-1, 40)。

    import tensorflow as tf
    
    # model parameters
    a = tf.Variable([-1.], tf.float32)
    b = tf.Variable([50.], tf.float32)
    
    # model input and output
    x = tf.placeholder(tf.float32)
    linear_model = a * x + b
    y = tf.placeholder(tf.float32)
    
    # loss
    loss = tf.reduce_sum(tf.square(linear_model - y)) / 8
    
    # training data
    x_train = [22, 25, 28, 30]
    y_train = [18, 15, 12, 10]
    
    # training loop
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)  # 1st
    
    print("loss: %s" % (sess.run(loss, {x: x_train, y: y_train})))
    
    # 2nd
    fixa = tf.assign(a, [-1.])
    fixb = tf.assign(b, [40.])
    sess.run([fixa, fixb])
    
    print("loss: %s" % (sess.run(loss, {x: x_train, y: y_train})))
    

    程序输出

    loss: 50.0
    loss: 0.0
    

    下载 tf_5_manual.py

    上面的python代码利用了在2 TensorFlow内核基础 介绍的基本API实现了“第一个机器学习问题”。代码通过一步步构造计算图,最后得到了loss节点。loss即4 第一个机器学习问题中定义过的损失函数,这里再次给出其定义:

    B-P-F-1 损失函数

    构建好计算图,接下来开始执行。执行loss节点(同时提供基于tf.placeholder的训练数据),得到loss的值为50。然后开始第二次训练,修改基于tf.Variable的a和b的值,再次执行loss节点,loss的值为0,降到了最低。此时的a和b就是最佳的模型参数了。

    还记得那个神秘力量吗?到底是什么让机器在第二次训练中将模型参数(a, b)的值从初始的随机值(-1, 50)迁移到最优的(-1, 40)?如果不靠运气的话,机器如何能自动的找到最优解呢?

    梯度下降算法

    在此之前,或许你已经想到了随机穷举的办法,因为机器不怕累。这的确是个办法,但面临的挑战也不可接受:不可控。因为即便是只有2个参数的模型训练,其枚举域也是无限大的,这和靠运气没有分别。运气差的话,等个几百年也说不定。

    不绕圈子,那个神秘力量就是:梯度下降算法(gradient descent)。虽然它也是让机器一小步一小步的去尝试不同的(a, b)的组合,但是它能指导每次前进的方向,使得每尝试一组新的值,loss就能变小一点点,直到趋于稳定。

    而这一切TF已经把它封装好了。 本篇先把它当个黑盒子使用。

    tf.train API

    import tensorflow as tf
    
    # model parameters
    a = tf.Variable([-1.], tf.float32)
    b = tf.Variable([50.], tf.float32)
    
    # model input and output
    x = tf.placeholder(tf.float32)
    linear_model = a * x + b
    y = tf.placeholder(tf.float32)
    
    # loss
    loss = tf.reduce_sum(tf.square(linear_model - y)) / 8   # sum of the squares
    
    # training data
    x_train = [22, 25, 28, 30]
    y_train = [18, 15, 12, 10]
    
    # optimizer
    optimizer = tf.train.GradientDescentOptimizer(0.01)
    train = optimizer.minimize(loss)
    
    # training loop
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    for i in range(1000):
        sess.run(train, {x: x_train, y: y_train})
    
    # evaluate training accuracy
    curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
    print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))
    

    代码几乎和TensorFlow Get Started官方代码一致,主要区别在于训练数据不同,以及初始值不同。

    • TF官方的训练数据是x_train = [1, 2, 3, 4],y_train = [0, -1, -2, -3],而我们的训练数据是“平行世界”的观察记录x_train = [22, 25, 28, 30],y_train = [18, 15, 12, 10]。
    • TF官方的(a, b)初始值是(.3, -.3), 我们的是(-1., 50.)。
    • 或许你还发现在官方版本的loss函数末尾没有/ 8,是因为我使用均方差的缘故,8由4x2得到(4个训练数据)。

    重点说下tf.train API。tf.train.GradientDescentOptimizer即封装了梯度下降算法。梯度下降在数学上属于最优化领域,从其名字Optimizater也可体现出。其参数就是“学习率”(learning rate),先记住这个名词,暂不展开,其基本的效用是决定待调整参数的调整幅度。学习率越大,调整幅度越大,学习的越快。反之亦然。可也并不是越大越好,是相对来说的。先取0.01。

    另一个需要输入给梯度下降算法的就是loss,它是求最优化解的主体,通过optimizer.minimize(loss)传入,并返回train节点。接下来在循环中执行train节点即可,循环的次数,即训练的步数。

    执行计算图,程序输出:

    a: [ nan] b: [-inf] loss: nan
    

    这个结果令人崩溃,仅仅换了下TF官方get started中例子中模型的训练数据和初始值,它就不工作了。

    先来看看问题在哪。一个调试的小技巧就是打印每次训练的情况,并调整loop的次数。

    for i in range(49):
        sess.run(train, {x: x_train, y: y_train})
        curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
        print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))
    

    程序输出:

    overflow

    TF实际是工作的,并没有撂挑子。只是它训练时每次调整(a, b)都幅度很大,接下来又矫枉过正且幅度越来越大,导致最终承载a和b的tf.float32溢出而产生了nan。这不是TF的一个bug,而是算法本身、训练数据、学习率、训练次数共同导致的(它们有个共同的名字:超参数。)。可见,训练是一门艺术

    直觉上,初始值或许有优劣之分,或许是离最优值越近的初始值越容易找到。可是训练数据则应该是无差别的吧?实则不然。但是现在我还不打算把它解释清楚,等后面分析完梯度下降算法后再回来看这个问题。

    遇到该问题的也不再少数,Stack Overflow上已经很好的回答了。我们先通过调整学习率和训练次数来得到一个完美的Ending。

    把学习率从0.01调制0.0028,然后将训练次数从1000调整至70000。

    程序输出:

    a: [-1.02855277] b: [ 40.75948715] loss: 0.00379487
    

    最终代码如下:

    import tensorflow as tf
    
    # model parameters
    a = tf.Variable([-1.], tf.float32)
    b = tf.Variable([50.], tf.float32)
    
    # model input and output
    x = tf.placeholder(tf.float32)
    linear_model = a * x + b
    y = tf.placeholder(tf.float32)
    
    # loss
    loss = tf.reduce_sum(tf.square(linear_model - y)) / 8   # sum of the squares
    
    # training data
    x_train = [22, 25, 28, 30]
    y_train = [18, 15, 12, 10]
    
    # optimizer
    optimizer = tf.train.GradientDescentOptimizer(0.0028)
    train = optimizer.minimize(loss)
    
    # training loop
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    for i in range(70000):
        sess.run(train, {x: x_train, y: y_train})
    
    # evaluate training accuracy
    curr_a, curr_b, curr_loss = sess.run([a, b, loss], {x: x_train, y: y_train})
    print("a: %s b: %s loss: %s" % (curr_a, curr_b, curr_loss))
    

    下载 tf_5_tf.train.py

    TensorBoard

    TF的另一个强大之处就是可视化算法的TensorBoard,把构造的计算图显示出来。图中显示,每一个基本运算都被独立成了一个节点。除了图中我标注的Rank节点、range节点,start节点、delta节点外,其他节点都是由所写代码构建出来的。

    TensorBoard

    词汇表

    • derivative; 导数;
    • estimator: 估计;
    • gradient descent: 梯度下降;
    • inference: 推理;
    • linear regression:线性回归;
    • loss function: 损失函数;
    • magnitude: 量;
    • optimal: 最优的;
    • optimizers: 优化器;

    上一篇 4 第一个机器学习问题
    下一篇 6 解锁梯度下降算法


    共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
    转载请注明:作者黑猿大叔(简书)

    相关文章

      网友评论

      • AvatarBB:线性回归 的英文是 Linear regression
        袁承兴: @AvatarBB 🙏感谢帮忙纠错😊

      本文标题:TensorFlow从0到1 - 5 - TensorFlow轻

      本文链接:https://www.haomeiwen.com/subject/jysdqxtx.html