spark的集群配置
这里我们介绍 standalone 模式环境搭建
首先在所有的节点上安装spark
参考文章安装 spark
https://www.jianshu.com/p/b0d88e5dd503
到 spark的conf的目录下,查看配置文件
[river@s201 spark]$ cd /soft/spark/conf/
[river@s201 conf]$ ll
total 36
-rw-r--r--. 1 river river 996 Oct 29 14:36 docker.properties.template
-rw-r--r--. 1 river river 1105 Oct 29 14:36 fairscheduler.xml.template
-rw-r--r--. 1 river river 2025 Oct 29 14:36 log4j.properties.template
-rw-r--r--. 1 river river 7801 Oct 29 14:36 metrics.properties.template
-rw-r--r--. 1 river river 865 Oct 29 14:36 slaves.template
-rw-r--r--. 1 river river 1292 Oct 29 14:36 spark-defaults.conf.template
-rwxr-xr-x. 1 river river 4221 Oct 29 14:36 spark-env.sh.template
[river@s201 conf]$
配置master节点的slaves
修改 该目录下 slaves.template 文件为 slaves
mv slaves.template slaves
编辑slaves 文件
添加从节点主机名
s202
s203
s204
我的hosts 配置如下
[river@s201 conf]$ cat /etc/hosts
127.0.0.1 localhost
192.168.172.201 s201
192.168.172.202 s202
192.168.172.203 s203
192.168.172.204 s204
同步slaves 文件到从节点
[river@s201 conf]$ scp slaves river@s202:/soft/spark/conf/
slaves 100% 871 736.9KB/s 00:00
[river@s201 conf]$ scp slaves river@s203:/soft/spark/conf/
slaves 100% 871 535.0KB/s 00:00
[river@s201 conf]$ scp slaves river@s204:/soft/spark/conf/
slaves 100% 871 530.9KB/s 00:00
[river@s201 conf]$
接下来启动spark集群
[river@s201 conf]$ /soft/spark/sbin/start-all.sh
starting org.apache.spark.deploy.master.Master, logging to /soft/spark/logs/spark-river-org.apache.spark.deploy.master.Master-1-s201.out
s204: starting org.apache.spark.deploy.worker.Worker, logging to /soft/spark/logs/spark-river-org.apache.spark.deploy.worker.Worker-1-s204.out
s202: starting org.apache.spark.deploy.worker.Worker, logging to /soft/spark/logs/spark-river-org.apache.spark.deploy.worker.Worker-1-s202.out
s203: starting org.apache.spark.deploy.worker.Worker, logging to /soft/spark/logs/spark-river-org.apache.spark.deploy.worker.Worker-1-s203.out
s201: starting org.apache.spark.deploy.worker.Worker, logging to /soft/spark/logs/spark-river-org.apache.spark.deploy.worker.Worker-1-s201.out
通过jps 查看 进程
[river@s201 conf]$ jps
66208 Jps
2148 SecondaryNameNode
2310 ResourceManager
1943 NameNode
66072 Master
66156 Worker
[river@s202 soft]$ jps
1781 DataNode
49061 Jps
48987 Worker
1902 NodeManager
可以看到 主节点上已经有 master 和 worker了,从节点也有了 worker
说明已经启动成功了
我们再登录到web来看看集群状况
可以看到节点都已经正常运行了

感谢你的阅读,喜欢的话请点赞哦。
网友评论