Reactor模型-单线程版

作者: topgunviper | 来源:发表于2016-11-22 17:01 被阅读436次

Reactor模型是典型的事件驱动模型。在网络编程中,所谓的事件当然就是read、write、bind、connect、close等这些动作了。Reactor模型的实现有很多种,下面介绍最基本的三种:

  • 单线程版
  • 多线程版
  • 主从多线程版
Key Word:Java NIO,Reactor模型,Java并发编程,Event-Driven

单线程版本

结构图(引用自Doug Lea的Scalable IO in Java)如下:

Reactor模型图
上图中Reactor是一个典型的事件驱动中心,客户端发起请求并建立连接时,会触发注册在多路复用器Selector上的SelectionKey.OP_ACCEPT事件,绑定在该事件上的Acceptor对象的职责就是接受请求,为接下来的读写操作做准备。

Reactor设计如下:

/**
 * Reactor
 * 
 * @author wqx
 *
 */
public class Reactor implements Runnable {

    private static final Logger LOG = LoggerFactory.getLogger(Reactor.class);
    
    private Selector selector;
    
    private ServerSocketChannel ssc;

    private Handler DEFAULT_HANDLER = new Handler(){
        @Override
        public void processRequest(Processor processor, ByteBuffer msg) {
            //NOOP
        }
    };
    private Handler handler = DEFAULT_HANDLER;
    
    
    /**
     * 启动阶段
     * @param port
     * @throws IOException
     */
    public Reactor(int port, int maxClients, Handler serverHandler) throws IOException{
        selector = Selector.open();
        ssc = ServerSocketChannel.open();
        ssc.configureBlocking(false);
        ssc.socket().bind(new InetSocketAddress(port));
        
        this.handler = serverHandler;
        SelectionKey sk = ssc.register(selector, SelectionKey.OP_ACCEPT);
        sk.attach(new Acceptor());
    }
    /**
     * 轮询阶段
     */
    @Override
    public void run() {
        while(!ssc.socket().isClosed()){
            try {
                selector.select(1000);
                Set<SelectionKey> keys;
                synchronized(this){
                    keys = selector.selectedKeys();
                }
                Iterator<SelectionKey> it = keys.iterator();
                while(it.hasNext()){
                    SelectionKey key = it.next();
                    dispatch(key);
                    it.remove();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        close();
    }
    
    public void dispatch(SelectionKey key){
        Runnable r = (Runnable)key.attachment();
        if(r != null)
            r.run();
    }
    /**
     * 用于接受TCP连接的Acceptor
     * 
     */
    class Acceptor implements Runnable{

        @Override
        public void run() {
            SocketChannel sc;
            try {
                sc = ssc.accept();
                if(sc != null){
                    new Processor(Reactor.this,selector,sc);
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
    
    public void close(){
        try {
            selector.close();
            if(LOG.isDebugEnabled()){
                LOG.debug("Close selector");
            }
        } catch (IOException e) {
            LOG.warn("Ignoring exception during close selector, e=" + e);
        }
    }
    public void processRequest(Processor processor, ByteBuffer msg){
        if(handler != DEFAULT_HANDLER){
            handler.processRequest(processor, msg);
        }
    }
}

上面是典型的单线程版本的Reactor实现,实例化Reactor对象的过程中,在当前多路复用器Selector上注册了OP_ACCEPT事件,当OP_ACCEPT事件发生后,Reactor通过dispatch方法执行Acceptor的run方法,Acceptor类的主要功能就是接受请求,建立连接,并将代表连接建立的SocketChannel以参数的形式构造Processor对象。

Processor的任务就是进行I/O操作。

下面是Processor的源码:

/**
 * Server Processor
 * 
 * @author wqx
 */
public class Processor implements Runnable {

    private static final Logger LOG = LoggerFactory.getLogger(Processor.class);

    Reactor reactor;

    private SocketChannel sc;

    private final SelectionKey sk;

    private final ByteBuffer lenBuffer = ByteBuffer.allocate(4);

    private ByteBuffer inputBuffer = lenBuffer;

    private ByteBuffer outputDirectBuffer = ByteBuffer.allocateDirect(1024 * 64);

    private LinkedBlockingQueue<ByteBuffer> outputQueue = new LinkedBlockingQueue<ByteBuffer>();

    public Processor(Reactor reactor, Selector sel,SocketChannel channel) throws IOException{
        this.reactor = reactor;
        sc = channel;
        sc.configureBlocking(false);
        sk = sc.register(sel, SelectionKey.OP_READ);
        sk.attach(this);
        sel.wakeup();
    }

    @Override
    public void run() {
        if(sc.isOpen() && sk.isValid()){
            if(sk.isReadable()){
                doRead();
            }else if(sk.isWritable()){
                doSend();
            }
        }else{
            LOG.error("try to do read/write operation on null socket");
            try {
                if(sc != null)
                    sc.close();
            } catch (IOException e) {}
        }
    }
    private void doRead(){
        try {
            int byteSize = sc.read(inputBuffer);
            
            if(byteSize < 0){
                LOG.error("Unable to read additional data");
            }
            if(!inputBuffer.hasRemaining()){
                
                if(inputBuffer == lenBuffer){
                    //read length
                    inputBuffer.flip();
                    int len = inputBuffer.getInt();
                    if(len < 0){
                        throw new IllegalArgumentException("Illegal data length");
                    }
                    //prepare for receiving data
                    inputBuffer = ByteBuffer.allocate(len);
                }else{
                    //read data
                    if(inputBuffer.hasRemaining()){
                        sc.read(inputBuffer);
                    }
                    if(!inputBuffer.hasRemaining()){
                        inputBuffer.flip();
                        processRequest();
                        //clear lenBuffer and waiting for next reading operation 
                        lenBuffer.clear();
                        inputBuffer = lenBuffer;
                    }
                }
            }
        } catch (IOException e) {
            LOG.error("Unexcepted Exception during read. e=" + e);
            try {
                if(sc != null)
                    sc.close();
            } catch (IOException e1) {
                LOG.warn("Ignoring exception when close socketChannel");
            }
        }
    }

    /**
     * process request and get response
     * 
     * @param request
     * @return
     */
    private void processRequest(){
        reactor.processRequest(this,inputBuffer);
    }
    private void doSend(){
        try{
            /**
             * write data to channel:
             * step 1: write the length of data(occupy 4 byte)
             * step 2: data content
             */
            if(outputQueue.size() > 0){
                ByteBuffer directBuffer = outputDirectBuffer;
                directBuffer.clear();
                
                for(ByteBuffer buf : outputQueue){
                    buf.flip();
                    
                    if(buf.remaining() > directBuffer.remaining()){
                        //prevent BufferOverflowException
                        buf = (ByteBuffer) buf.slice().limit(directBuffer.remaining());
                    }
                    //transfers the bytes remaining in buf into  directBuffer
                    int p = buf.position();
                    directBuffer.put(buf);
                    //reset position
                    buf.position(p);

                    if(!directBuffer.hasRemaining()){
                        break;
                    }
                }
                directBuffer.flip();
                int sendSize = sc.write(directBuffer);
                
                while(!outputQueue.isEmpty()){
                    ByteBuffer buf = outputQueue.peek();
                    int left = buf.remaining() - sendSize;
                    if(left > 0){
                        buf.position(buf.position() + sendSize);
                        break;
                    }
                    sendSize -= buf.remaining();
                    outputQueue.remove();
                }
            }
            synchronized(reactor){
                if(outputQueue.size() == 0){
                    //disable write
                    disableWrite();
                }else{
                    //enable write
                    enableWrite();
                }
            }
        } catch (CancelledKeyException e) {
            LOG.warn("CancelledKeyException occur e=" + e);
        } catch (IOException e) {
            LOG.warn("Exception causing close, due to " + e);
        }
    }
    public void sendBuffer(ByteBuffer bb){
        try{
            synchronized(this.reactor){
                if(LOG.isDebugEnabled()){
                    LOG.debug("add sendable bytebuffer into outputQueue");
                }
                //wrap ByteBuffer with length header
                ByteBuffer wrapped = wrap(bb);
                
                outputQueue.add(wrapped);
                
                enableWrite();
            }
        }catch(Exception e){
            LOG.error("Unexcepted Exception: ", e);
        }
    }
    
    private ByteBuffer wrap(ByteBuffer bb){
        bb.flip();
        lenBuffer.clear();
        int len = bb.remaining();
        lenBuffer.putInt(len);
        ByteBuffer resp = ByteBuffer.allocate(len+4);
        lenBuffer.flip();
        
        resp.put(lenBuffer);
        resp.put(bb);
        return resp;
    }
    private void enableWrite(){
        int i = sk.interestOps();
        if((i & SelectionKey.OP_WRITE) == 0){
            sk.interestOps(i | SelectionKey.OP_WRITE);
        }
    }
    private void disableWrite(){
        int i = sk.interestOps();
        if((i & SelectionKey.OP_WRITE) == 1){
            sk.interestOps(i & (~SelectionKey.OP_WRITE));           
        }
    }
}

其实Processor要做的事情很简单,就是向selector注册感兴趣的读写时间,OP_READ或OP_WRITE,然后等待事件触发,做相应的操作。

    @Override
    public void run() {
        if(sc.isOpen() && sk.isValid()){
            if(sk.isReadable()){
                doRead();
            }else if(sk.isWritable()){
                doSend();
            }
        }else{
            LOG.error("try to do read/write operation on null socket");
            try {
                if(sc != null)
                    sc.close();
            } catch (IOException e) {}
        }
    }

而doRead()和doSend()方法稍微复杂了一点,这里其实处理了用TCP协议进行通信时必须要解决的问题:TCP粘包拆包问题

TCP粘包拆包问题

我们都知道TCP协议是面向字节流的,而字节流是连续的,无法有效识别应用层数据的边界。如下图:


粘包拆包示意图

上图显示的应用层有三个数据包,D1,D2,D3.当应用层数据传到传输层后,可能会出现粘包拆包现象。

TCP协议的基本传输单位是报文段,而每个报文段最大有效载荷是有限制的,一般以太网MTU为1500,去除IP头20B,TCP头20B,那么剩下的1460B就是传输层最大报文段的有效载荷。如果应用层数据大于该值(如上图中的数据块D2),那么传输层就会进行拆分重组。

解决方案

  1. 消息定长(通信双方发送的消息固定长度,缺点很明显:浪费可耻!!!)
  2. 每个消息之间加分割符(缺点:消息编解码耗时,并且如果消息体中本省就包含分隔字符,需要进行转义,效率低)
  3. 每个数据包加个Header!!!(header中指定后面数据的长度,这不就是Tcp、Ip协议通用的做法么。。。哈哈)

采用方案三

示意图如下:


数据包结构

header区占用4B,内容为数据的长度。too simple。。。-_-

理论有了,下面具体分析下Read、Write的实现过程:

doRead
inputBuffer负责接受数据,lenBuffer负责接受数据长度,初始化的时候,将lenBuffer赋给inputBuffer,定义如下:

private final ByteBuffer lenBuffer = ByteBuffer.allocate(4);
private ByteBuffer inputBuffer = lenBuffer;
  1. 如果inputBuffer == lenBuffer,那么从inputBuffer中读取出一个整型值len,这个值就是接下来要接受的数据的长度。同时分配一个大小为len的内存空间,并复制给inputBuffer,准备接受数据!!!
    private void doRead(){
        try {
            int byteSize = sc.read(inputBuffer);
            
            if(byteSize < 0){
                LOG.error("Unable to read additional data");
            }
            if(!inputBuffer.hasRemaining()){
                
                if(inputBuffer == lenBuffer){
                    //read length
                    inputBuffer.flip();
                    int len = inputBuffer.getInt();
                    if(len < 0){
                        throw new IllegalArgumentException("Illegal data length");
                    }
                    //prepare for receiving data
                    inputBuffer = ByteBuffer.allocate(len);
                else{...}
  1. 如果inputBuffer != lenBuffer,那么开始接受数据吧!
if(inputBuffer == lenBuffer){
        //。。。
}else{
    //read data
    if(inputBuffer.hasRemaining()){
        sc.read(inputBuffer);
    }
    if(!inputBuffer.hasRemaining()){
        inputBuffer.flip();
        processRequest();
        //clear lenBuffer and waiting for next reading operation 
        lenBuffer.clear();
        inputBuffer = lenBuffer;
    }
}

注意

  1. 必须保证缓冲区是满的,即inputBuffer.hasRemaining()=false
  2. processRequest后,将inputBuffer重新赋值为lenBuffer,为下一次读操作做准备。

doWrite

用户调用sendBuffer方法发送数据,其实就是将数据加入outputQueue,这个outputQueue就是一个发送缓冲队列。

public void sendBuffer(ByteBuffer bb){
        try{
            synchronized(this.reactor){
                if(LOG.isDebugEnabled()){
                    LOG.debug("add sendable bytebuffer into outputQueue");
                }
                //wrap ByteBuffer with length header
                ByteBuffer wrapped = wrap(bb);
                
                outputQueue.add(wrapped);
                
                enableWrite();
            }
        }catch(Exception e){
            LOG.error("Unexcepted Exception: ", e);
        }
    }

doSend方法就很好理解了,无非就是不断从outputQueue中取数据,然后写入channel中即可。过程如下:

将发送队列outputQueue中的数据写入缓冲区outputDirectBuffer:

  1. 清空outputDirectBuffer,为发送数据做准备
  2. 将outputQueue数据写入outputDirectBuffer
  3. 调用socketChannel.write(outputDirectBuffer);将outputDirectBuffer写入socket缓冲区

执行步骤2的时候,我们可能会遇到这么几种情况:

1.某个数据包大小超过了outputDirectBuffer剩余空间大小

2.outputDirectBuffer已被填满,但是outputQueue仍有待发送的数据

执行步骤3的时候,也可能出现下面两种情况:

1.outputDirectBuffer被全部写入socket缓冲区

2.outputDirectBuffer只有部分数据或者压根就没有数据被写入socket缓冲区

实现过程可以结合源码,这里重点分析下面几个点:

为什么需要重置buf的position

int p = buf.position();
directBuffer.put(buf);
//reset position
buf.position(p);

写入directBuffer的数据是即将被写入SocketChannel的数据,问题就在于:当我们调用

int sendSize = sc.write(directBuffer);

的时候,directBuffer中的数据都被写入Channel了吗?明显是不确定的(具体可以看java.nio.channels.SocketChannel.write(ByteBuffer src)的doc文档)

上面的问题如何解决

思路很简单,根据write方法返回值sendSize,遍历outputQueue中的ByteBuffer,根据buf.remaining()和sendSize的大小,才可以确定buf是否真的被发送了。如下所示:

while(!outputQueue.isEmpty()){
    ByteBuffer buf = outputQueue.peek();
    int left = buf.remaining() - sendSize;
    if(left > 0){
        buf.position(buf.position() + sendSize);
        break;
    }
    sendSize -= buf.remaining();
    outputQueue.remove();
}

网络通信基本解决,上面的处理思路是参照Zookeeper网络模块的实现,有兴趣可以看Zookeeper相应源码。

测试

Server端:

public class ServerTest {

    private static int PORT = 8888;
    
    public static void main(String[] args) throws IOException, InterruptedException {
        
        Thread t = new Thread(new Reactor(PORT,1024,new MyHandler()));
        t.start();
        System.out.println("server start");
        t.join();
    }
}

用户自定义Handler:

public class MyHandler implements Handler {
    
    @Override
    public void processRequest(Processor processor, ByteBuffer msg) {
        byte[] con = new byte[msg.remaining()];
        msg.get(con);
        
        String str = new String(con,0,con.length);
        
        String resp = "";
        switch(str){
        case "request1":resp = "response1";break;
        case "request2":resp = "response2";break;
        case "request3":resp = "response3";break;
        default :resp = "";
        }
        
        ByteBuffer buf = ByteBuffer.allocate(resp.getBytes().length);
        buf.put(resp.getBytes());
        
        processor.sendBuffer(buf);
    }
}

client端

public class ClientTest {

    private static String HOST = "localhost";
    private static int PORT = 8888;

    public static void main(String[] args) throws IOException {
        
        Client client = new Client();
        client.socket().setTcpNoDelay(true);
        
        client.connect(
                new InetSocketAddress(HOST,PORT));
        
        ByteBuffer msg;
        for(int i = 1; i <= 3; i++){
            msg = ByteBuffer.wrap(("request" + i).getBytes());
            System.out.println("send-" + "request" + i);
            
            ByteBuffer resp = client.send(msg);
            byte[] retVal = new byte[resp.remaining()];
            resp.get(retVal);

            System.out.println("receive-" + new String(retVal,0,retVal.length));
            
        }
    }
}

输出:

send-request1
receive-response1
send-request2
receive-response2
send-request3
receive-response3

Client是一个客户端工具类,简单封装了发送ByteBuffer前,添加header的逻辑。详见源码。Client.java

总结

在这种实现方式中,dispatch方法是同步阻塞的!!!所有的IO操作和业务逻辑处理都在NIO线程(即Reactor线程)中完成。如果业务处理很快,那么这种实现方式没什么问题,不用切换到用户线程。但是,想象一下如果业务处理很耗时(涉及很多数据库操作、磁盘操作等),那么这种情况下Reactor将被阻塞,这肯定是我们不希望看到的。解决方法很简单,业务逻辑进行异步处理,即交给用户线程处理。

下面分析下单线程版的Reactor模型的缺点:

  • 自始自终都只有一个Reactor线程,缺点很明显:Reactor意外挂了,整个系统也就无法正常工作,可靠性太差。
  • 单线程的另外一个问题是在大负载的情况下,Reactor的处理速度必然会成为系统性能的瓶颈。

如何解决上述问题呢?下文详解Reactor多线程版本

GitHub完整源码

相关文章

网友评论

    本文标题:Reactor模型-单线程版

    本文链接:https://www.haomeiwen.com/subject/catmpttx.html