美文网首页
导数与微分的不同

导数与微分的不同

作者: 雨夜剪魂 | 来源:发表于2019-05-31 15:08 被阅读0次

1、定义不同

导数又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数。

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。

2、本质不同

导数是描述函数变化的快慢,微分是描述函数变化的程度。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。而微分是一个函数表达式,用于自变量产生微小变化时计算因变量的近似值。

向左转|向右转

3、几何意义不同

导数的几何意义是切线的斜率,微分的几何意义是切线纵坐标的增量。因此微分可以用来做近似运算和误差估计。最简单的一元情况下,导数是一个确定的数值,几何意义是切线斜率,物理意义是瞬时速度。

另一个解释:

导数是函数上切点的斜率

k=tan(y/x)

而这里的y是△y减去微小的部分

剩下的就是dy,

所以k=dy/dx

这里的dx就是△x,并没有像△y那样,还要减去一小部分

另一个解释:

(1)起源(定义)不同:导数起源是函数值随自变量增量的变化率,即△y/△x的极限。微分起源于微量分析,如△y可分解成A△x与o(△x)两部分之和,其线性主部称微分。当△x很小时,△y的数值大小主要由微分A△x决定,而o(△x)对其大小的影响是很小的。

(2)几何意义不同:导数的值是该点处切线的斜率,微分的值是沿切线方向上纵坐标的增量,而△y则是沿曲线方向上纵坐标的增量。可参考任何一本教材的图形理解。

(3)联系:导数是微分之商(微商)y' =dy/dx, 微分dy=f'(x)dx,这里公式本身也体现了它们的区别。

(4)关系:对一元函数而言,可导必可微,可微必可导。

相关文章

  • 导数与微分的不同

    1、定义不同 导数又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变...

  • 高等数学有哪些章节标题?1 函数与极限,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程,向量代数...

  • 高等数学

    函数 极限与连续 导数与微分 微分中值定理和导数的应用 一元函数积分学 线性代数初步

  • 高等数学(二)导数与微分

    (一)导数与微分的概念 1、导数的概念 定义1定义2定理1 可导⇌左右导数存在且相等 2、微分的概念 定义3 若当...

  • 导数与微分

    导数### 当自变量的增量趋于零时,因变量与自变量的增量之商的极限。当一个函数存在导数时,称为函数可导或可微分。 ...

  • 导数与微分

    一. 导数定义 若是极限存在,则称函数y = f(x)在点处可倒 k值直线用一般函数关系就可以求出来, 曲线才需要...

  • 导数与微分

  • 导数与微分

    导数与微分 一.导数的概念 1.导数概念 导数定义:设函数f(x)在的某领域内有定义,若极限存在,称f(x)在点处...

  • 导数、微分、积分、三角函数的基本公式

    导数公式 ————————————————————————————————————————————————— 微分...

  • 一元函数微分学(高等数学竞赛2)

    一、导数与微分的概念 在某一点的导数: 可导、可微、连续的关系: 可导可微连续 二、特殊的导数 参数方程的导数: ...

网友评论

      本文标题:导数与微分的不同

      本文链接:https://www.haomeiwen.com/subject/cmawtctx.html