美文网首页架构社区JAVA@IT·互联网
Java多线程之线程池(ThreadPoolExecutor)实

Java多线程之线程池(ThreadPoolExecutor)实

作者: 小怪聊职场 | 来源:发表于2018-05-14 23:11 被阅读540次

    在上一篇文章Java中实现多线程的3种方法介绍和比较中,我们讲解了Java中实现多线程的3种方法。使用多线程,就必须要考虑使用线程池,今天我们来聊聊线程池的那些事。
    注:源码都是基于JDK1.8

    一、为什么要使用线程池?

    如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

    那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

    在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池,首先我们从最核心的ThreadPoolExecutor类中的方法讲起,然后再讲述它的实现原理,接着给出了它的使用示例,最后讨论了一下如何合理配置线程池的大小。

    二、Java中的ThreadPoolExecutor类

    java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExecutor类的具体实现源码。

    在ThreadPoolExecutor类中提供了四个构造方法:

    public class ThreadPoolExecutor extends AbstractExecutorService {
        ...
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), defaultHandler);
        }
    
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 threadFactory, defaultHandler);
        }
    
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  RejectedExecutionHandler handler) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 Executors.defaultThreadFactory(), handler);
        }
    
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.acc = System.getSecurityManager() == null ?
                    null :
                    AccessController.getContext();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作。

    下面解释下一下构造器中各个参数的含义:

    • corePoolSize:核心池的大小。
    • maximumPoolSize:线程池最大线程数,它表示在线程池中最多能创建多少个线程,注意与corePoolSize区分,后面会讲到。
    • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。
    • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
        /**
         * Time unit representing one thousandth of a microsecond
         */
        NANOSECONDS {
            public long toNanos(long d)   { return d; }
            public long toMicros(long d)  { return d/(C1/C0); }
            public long toMillis(long d)  { return d/(C2/C0); }
            public long toSeconds(long d) { return d/(C3/C0); }
            public long toMinutes(long d) { return d/(C4/C0); }
            public long toHours(long d)   { return d/(C5/C0); }
            public long toDays(long d)    { return d/(C6/C0); }
            public long convert(long d, TimeUnit u) { return u.toNanos(d); }
            int excessNanos(long d, long m) { return (int)(d - (m*C2)); }
        },
    
        /**
         * Time unit representing one thousandth of a millisecond
         */
        MICROSECONDS {
            public long toNanos(long d)   { return x(d, C1/C0, MAX/(C1/C0)); }
            public long toMicros(long d)  { return d; }
            public long toMillis(long d)  { return d/(C2/C1); }
            public long toSeconds(long d) { return d/(C3/C1); }
            public long toMinutes(long d) { return d/(C4/C1); }
            public long toHours(long d)   { return d/(C5/C1); }
            public long toDays(long d)    { return d/(C6/C1); }
            public long convert(long d, TimeUnit u) { return u.toMicros(d); }
            int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); }
        },
    
        /**
         * Time unit representing one thousandth of a second
         */
        MILLISECONDS {
            public long toNanos(long d)   { return x(d, C2/C0, MAX/(C2/C0)); }
            public long toMicros(long d)  { return x(d, C2/C1, MAX/(C2/C1)); }
            public long toMillis(long d)  { return d; }
            public long toSeconds(long d) { return d/(C3/C2); }
            public long toMinutes(long d) { return d/(C4/C2); }
            public long toHours(long d)   { return d/(C5/C2); }
            public long toDays(long d)    { return d/(C6/C2); }
            public long convert(long d, TimeUnit u) { return u.toMillis(d); }
            int excessNanos(long d, long m) { return 0; }
        },
    
        /**
         * Time unit representing one second
         */
        SECONDS {
            public long toNanos(long d)   { return x(d, C3/C0, MAX/(C3/C0)); }
            public long toMicros(long d)  { return x(d, C3/C1, MAX/(C3/C1)); }
            public long toMillis(long d)  { return x(d, C3/C2, MAX/(C3/C2)); }
            public long toSeconds(long d) { return d; }
            public long toMinutes(long d) { return d/(C4/C3); }
            public long toHours(long d)   { return d/(C5/C3); }
            public long toDays(long d)    { return d/(C6/C3); }
            public long convert(long d, TimeUnit u) { return u.toSeconds(d); }
            int excessNanos(long d, long m) { return 0; }
        },
    
        /**
         * Time unit representing sixty seconds
         */
        MINUTES {
            public long toNanos(long d)   { return x(d, C4/C0, MAX/(C4/C0)); }
            public long toMicros(long d)  { return x(d, C4/C1, MAX/(C4/C1)); }
            public long toMillis(long d)  { return x(d, C4/C2, MAX/(C4/C2)); }
            public long toSeconds(long d) { return x(d, C4/C3, MAX/(C4/C3)); }
            public long toMinutes(long d) { return d; }
            public long toHours(long d)   { return d/(C5/C4); }
            public long toDays(long d)    { return d/(C6/C4); }
            public long convert(long d, TimeUnit u) { return u.toMinutes(d); }
            int excessNanos(long d, long m) { return 0; }
        },
    
        /**
         * Time unit representing sixty minutes
         */
        HOURS {
            public long toNanos(long d)   { return x(d, C5/C0, MAX/(C5/C0)); }
            public long toMicros(long d)  { return x(d, C5/C1, MAX/(C5/C1)); }
            public long toMillis(long d)  { return x(d, C5/C2, MAX/(C5/C2)); }
            public long toSeconds(long d) { return x(d, C5/C3, MAX/(C5/C3)); }
            public long toMinutes(long d) { return x(d, C5/C4, MAX/(C5/C4)); }
            public long toHours(long d)   { return d; }
            public long toDays(long d)    { return d/(C6/C5); }
            public long convert(long d, TimeUnit u) { return u.toHours(d); }
            int excessNanos(long d, long m) { return 0; }
        },
    
        /**
         * Time unit representing twenty four hours
         */
        DAYS {
            public long toNanos(long d)   { return x(d, C6/C0, MAX/(C6/C0)); }
            public long toMicros(long d)  { return x(d, C6/C1, MAX/(C6/C1)); }
            public long toMillis(long d)  { return x(d, C6/C2, MAX/(C6/C2)); }
            public long toSeconds(long d) { return x(d, C6/C3, MAX/(C6/C3)); }
            public long toMinutes(long d) { return x(d, C6/C4, MAX/(C6/C4)); }
            public long toHours(long d)   { return x(d, C6/C5, MAX/(C6/C5)); }
            public long toDays(long d)    { return d; }
            public long convert(long d, TimeUnit u) { return u.toDays(d); }
            int excessNanos(long d, long m) { return 0; }
        };
    
    • workQueue:一个阻塞队列,用来存储等待执行的任务。
    • threadFactory:线程工厂,主要用来创建线程。
    • handler:表示当拒绝处理任务时的策略。

    从源码可以得知ThreadPoolExecutor继承了AbstractExecutorService,我们看下AbstractExecutorService的实现:

    public abstract class AbstractExecutorService implements ExecutorService {
    
        protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
            return new FutureTask<T>(runnable, value);
        }
    
        protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
            return new FutureTask<T>(callable);
        }
    
        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    
        public <T> Future<T> submit(Runnable task, T result) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task, result);
            execute(ftask);
            return ftask;
        }
    
        public <T> Future<T> submit(Callable<T> task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task);
            execute(ftask);
            return ftask;
        }
    
        private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,
                                  boolean timed, long nanos)
            throws InterruptedException, ExecutionException, TimeoutException {
            ...
        }
    
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
            throws InterruptedException, ExecutionException {
            try {
                return doInvokeAny(tasks, false, 0);
            } catch (TimeoutException cannotHappen) {
                assert false;
                return null;
            }
        }
    
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                               long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException {
            return doInvokeAny(tasks, true, unit.toNanos(timeout));
        }
    
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
            throws InterruptedException {
            ...
        }
    
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                             long timeout, TimeUnit unit)
            throws InterruptedException {
            ...
        }
    

    AbstractExecutorService是一个抽象类,它实现了ExecutorService接口,我们看下ExecutorService接口的实现:

    public interface ExecutorService extends Executor {
        void shutdown();
    
        List<Runnable> shutdownNow();
    
        boolean isShutdown();
    
        boolean isTerminated();
    
        boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException;
    
        <T> Future<T> submit(Callable<T> task);
    
        <T> Future<T> submit(Runnable task, T result);
    
        Future<?> submit(Runnable task);
    
        <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
            throws InterruptedException;
    
        <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                      long timeout, TimeUnit unit)
            throws InterruptedException;
    
        <T> T invokeAny(Collection<? extends Callable<T>> tasks)
            throws InterruptedException, ExecutionException;
    
        <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                        long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException;
    }
    

    而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:

    public interface Executor {
        void execute(Runnable command);
    }
    

    到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。
    1、Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的。
    2、然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;
    3、抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;
    4、然后ThreadPoolExecutor继承了类AbstractExecutorService。

    在ThreadPoolExecutor类中有几个非常重要的方法:
    1、public void execute(Runnable command)
    2、public void shutdown()
    3、public List<Runnable> shutdownNow()
    4、 submit

    public Future<?> submit(Runnable task) 
    public <T> Future<T> submit(Runnable task, T result)
    public <T> Future<T> submit(Callable<T> task)
    
    • execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。
    • shutdown()和shutdownNow()是用来关闭线程池的。
    • submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果。

    本文只对ThreadPoolExecutor类做一个宏观的介绍,下一篇文章将会深入剖析ThreadPoolExecutor类,以此去深入了解线程池的实现原理。

    相关文章

      网友评论

        本文标题:Java多线程之线程池(ThreadPoolExecutor)实

        本文链接:https://www.haomeiwen.com/subject/cslsdftx.html