(4)Flink CEP SQL贪婪词量演示

作者: NBI大数据可视化分析 | 来源:发表于2022-08-19 18:31 被阅读0次

    基于上一篇(3)Flink CEP SQL宽松近邻代码演示的延展,在上一篇中我们使用贪婪词量 +(至少匹配1行或多行),本篇将演示多种贪婪词量的效果:
    (1)使用贪婪词量 *(匹配0行或多行)

    public static void main(String[] args) {
        EnvironmentSettings settings = null;
        StreamTableEnvironment tEnv = null;
        try {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            settings = EnvironmentSettings.newInstance()
                    .useBlinkPlanner()
                    .inStreamingMode()
                    .build();
            tEnv = StreamTableEnvironment.create(env, settings);
            System.out.println("===============CEP_SQL_10=================");
            final DateTimeFormatter dateTimeFormatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
            DataStream<Ticker> dataStream =
                    env.fromElements(
                            new Ticker(1, "ACME", 22, 1, LocalDateTime.parse("2021-12-10 10:00:00", dateTimeFormatter)),
                            new Ticker(3, "ACME", 19, 1, LocalDateTime.parse("2021-12-10 10:00:02", dateTimeFormatter)),
                            new Ticker(4, "ACME", 23, 3, LocalDateTime.parse("2021-12-10 10:00:03", dateTimeFormatter)),
                            new Ticker(5, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:04", dateTimeFormatter)),
                            new Ticker(6, "Apple", 18, 1, LocalDateTime.parse("2021-12-10 10:00:05", dateTimeFormatter)),
                            new Ticker(7, "Apple", 16, 1, LocalDateTime.parse("2021-12-10 10:00:06", dateTimeFormatter)),
                            new Ticker(8, "Apple", 14, 2, LocalDateTime.parse("2021-12-10 10:00:07", dateTimeFormatter)),
                            new Ticker(9, "Apple", 19, 2, LocalDateTime.parse("2021-12-10 10:00:08", dateTimeFormatter)),
                            new Ticker(10, "Apple", 25, 2, LocalDateTime.parse("2021-12-10 10:00:09", dateTimeFormatter)),
                            new Ticker(11, "Apple", 11, 1, LocalDateTime.parse("2021-12-10 10:00:11", dateTimeFormatter)),
                            new Ticker(12, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:12", dateTimeFormatter)),
                            new Ticker(13, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:13", dateTimeFormatter)),
                            new Ticker(14, "Apple", 25, 1, LocalDateTime.parse("2021-12-10 10:00:14", dateTimeFormatter)),
                            new Ticker(15, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:15", dateTimeFormatter)),
                            new Ticker(16, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:16", dateTimeFormatter)),
                            new Ticker(17, "Apple", 19, 1, LocalDateTime.parse("2021-12-10 10:00:17", dateTimeFormatter)),
                            new Ticker(18, "Apple", 15, 1, LocalDateTime.parse("2021-12-10 10:00:18", dateTimeFormatter)));
            
            Table table = tEnv.fromDataStream(dataStream, Schema.newBuilder()
                    .column("id", DataTypes.BIGINT())
                    .column("symbol", DataTypes.STRING())
                    .column("price", DataTypes.BIGINT())
                    .column("tax", DataTypes.BIGINT())
                    .column("rowtime", DataTypes.TIMESTAMP(3))
                    .watermark("rowtime", "rowtime - INTERVAL '1' SECOND")
                    .build());
            tEnv.createTemporaryView("CEP_SQL_10", table);
            
            String sql = "SELECT * " +
                    "FROM CEP_SQL_10 " +
                    "    MATCH_RECOGNIZE ( " +
                    "        PARTITION BY symbol " +       //按symbol分区,将相同卡号的数据分到同一个计算节点上。
                    "        ORDER BY rowtime " +          //在窗口内,对事件时间进行排序。
                    "        MEASURES " +                   //定义如何根据匹配成功的输入事件构造输出事件
                    "            e1.id as id,"+
                    "            AVG(e1.price) as avgPrice,"+
                    "            e1.rowtime AS start_tstamp, " +
                    "            e3.rowtime AS end_tstamp " +
                    "        ONE ROW PER MATCH " +                                      //匹配成功输出一条
                    "        AFTER MATCH  skip to next row " +                   //匹配后跳转到下一行
                    "        PATTERN ( e1 e2* e3) WITHIN INTERVAL '2' MINUTE" +
                    "        DEFINE " +                                                 //定义各事件的匹配条件
                    "            e1 AS " +
                    "                e1.price = 25 , " +
                    "            e2 AS " +
                    "                e2.price > 10 AND e2.price <19," +
                    "            e3 AS " +
                    "                e3.price = 19 " +
                    "    ) MR";
            
            
            TableResult res = tEnv.executeSql(sql);
            res.print();
            tEnv.dropTemporaryView("CEP_SQL_10");
    }
    

    匹配到了三组数据


    image.png

    贪婪词量 *(匹配0行或多行)


    image.png
    (2)使用贪婪词量 {n}(严格匹配n行)
    image.png
    image.png
    image.png

    (3)使用贪婪词量 {n,}(n或者更多行(n≥O))


    image.png
    image.png
    image.png

    相关文章

      网友评论

        本文标题:(4)Flink CEP SQL贪婪词量演示

        本文链接:https://www.haomeiwen.com/subject/czvugrtx.html