美文网首页Machine Learning机器学习机器学习
数据挖掘面试题之SVM和LR的不同

数据挖掘面试题之SVM和LR的不同

作者: 工程师milter | 来源:发表于2017-03-15 20:23 被阅读1853次

    这道题很能考察应试者的理论与实践水平,同时,它也揭示了一个很重要的学习方法,那就是比较学习。这种方法在机器学习中尤其重要,因为有很多模型,通过比较,会迅速深化你对各个模型的认识水平。答案是我自己总结的,请指正。

    • 1、样本点对模型的作用不同。SVM中,只有关键的样本点(支持向量)对模型结果有影响,而LR中,每一个样本点都对模型有影响。

    • 2、损失函数不同。SVM是hinge损失函数,LR是log损失函数

    • 3、理论基础不同。SVM基于严格的数学推导,LR基于统计。

    • 4、输出不同。LR可以对每个样本点给出类别判断的概率值,SVM无法做到。

    • 5、可处理的特征空间维度不同。LR在特征空间维度很高时,表现较差。SVM则可以通过对偶求解高效应对这一挑战。

    • 6、防过拟合能力不同。SVM模型中内含了L2正则,可有效防止过拟合。LR要自己添加正则项。

    • 7、处理非线性分类问题能力不同。SVM可通过核函数灵活地将非线性问题转化为线性分类问题。LR如果要做到这一点,需要自己手动地进行特征转换。

    • 8、处理分类问题能力不同。SVM只能处理二类分类问题,如果要处理多类别分类,需要进行 one VS one 或one VS all建模。LR可以直接进行多类别分类。

    • 9、计算复杂度不同。对于海量数据,SVM的效率较低,LR效率比较高。

    • 10、对数据要求不同。SVM依赖于数据表达出的距离测度,所以需要对数据进行标准化处理,而LR不需要。

    • 11、能力范围不同。 SVM拓展后,可解决回归问题,LR不能。

    • 12、可解释性不同。LR基于统计,可解释性比SVM好。

    • 13、抗噪声数据能力不同。SVM的损失函数基于距离测度,抗噪声能力要强于LR。

    相关文章

      网友评论

      • f0ccfee285c1:楼主,太棒了。读了你的svm,想评论说对比下LR,后来心想你可能写了,于是就真的在这里找到了。
      • marvinxu:这个哪本书上有
        工程师milter:@marvinxu 通过查找网上资料自己总结的
        工程师milter: @marvinxu 自己总结的。
      • cathyxlyl:总结的很全面👍
        有一个小问题,我感觉像LR这样的基于w*x+b的线性模型也是需要做标准化的。一是特征的量纲差太远的话容易造成模型不稳定,二是训练收敛会比较慢。
        工程师milter:有道理!感谢指点!

      本文标题:数据挖掘面试题之SVM和LR的不同

      本文链接:https://www.haomeiwen.com/subject/dedrnttx.html