![](https://img.haomeiwen.com/i20882701/6e77c44eac2b26b1.png)
//屁话时间
看完武老师的视频,哈哈哈哈哈哈哈哈哈哈哈
反常积分这么简单就结束了???
。。。。
拿出大红书啃了一天后
![](https://img.haomeiwen.com/i20882701/87c033260ccf8854.jpg)
审敛法一窍不通🤦。
有股熟悉的味道。。。。
![](https://img.haomeiwen.com/i20882701/b996768249d511d7.jpg)
补上...p<=1...发散。。。设的东西也不见了,,,
![](https://img.haomeiwen.com/i20882701/392c5493eaaf641c.jpg)
b站救我→
无穷极限反常积分审敛法
![](https://img.haomeiwen.com/i20882701/b5c256f47df58ea2.jpg)
![](https://img.haomeiwen.com/i20882701/8eb7ee06840a5b4b.jpg)
❤无穷-极限审敛法
![](https://img.haomeiwen.com/i20882701/5de3430b66a36a27.jpg)
❤无界-极限审敛法
大红书上的这两题就好做了→用单调有界定理去证明也可,但是水平不够,需要多练
![](https://img.haomeiwen.com/i20882701/564ddd5012db5917.jpg)
![](https://img.haomeiwen.com/i20882701/13e8106e9c7d9598.jpg)
![](https://img.haomeiwen.com/i20882701/a6996772c01fe5a5.jpg)
![](https://img.haomeiwen.com/i20882701/74b70d5e03045f90.jpg)
![](https://img.haomeiwen.com/i20882701/c78c08409e89ee67.jpg)
-
按定义走
![](https://img.haomeiwen.com/i20882701/ff4356cf162e1059.jpg)
![](https://img.haomeiwen.com/i20882701/caacbe97cfdea595.jpg)
![](https://img.haomeiwen.com/i20882701/553b59c6f0846a22.jpg)
![](https://img.haomeiwen.com/i20882701/0b71759262dfc6ff.png)
记忆方法:
小的喜欢小的,大的喜欢大的,小的不喜欢大的,大的也不喜欢小的。
一旦喜欢上了,就收敛了,一旦讨厌上了,就发散
![](https://img.haomeiwen.com/i20882701/477eb7f22a665670.png)
负无穷和正无穷在反常积分的定义里头不是对称区间,不是同一个无穷,两个无穷各走各的
![](https://img.haomeiwen.com/i20882701/1016f31038c5585f.jpg)
-
奇偶对称区间的处理
先判对半区间得收敛型
![](https://img.haomeiwen.com/i20882701/d8a4c73970a0c997.jpg)
-
两类反常积分的识别
![](https://img.haomeiwen.com/i20882701/7a6ecd2b82eef0c1.jpg)
-
重要公式
![](https://img.haomeiwen.com/i20882701/4256a98573d516ae.jpg)
-
补题
![](https://img.haomeiwen.com/i20882701/9741ff5a42b204be.jpg)
对于瑕点的处理
![](https://img.haomeiwen.com/i20882701/a2108823070c5c1a.png)
出现一项len(x)型,不一定就趋向于无穷了
![](https://img.haomeiwen.com/i20882701/c29eaced177e5db7.png)
数学归纳法
![](https://img.haomeiwen.com/i20882701/7a853343c90c180d.png)
![](https://img.haomeiwen.com/i20882701/66f8295f47230e3b.jpg)
网友评论