美文网首页高等数学
高等数学:不定积分题选(2)

高等数学:不定积分题选(2)

作者: 溺于恐 | 来源:发表于2018-12-13 08:26 被阅读26次

    1.\int {x^3+1\over (x^2+1)^2}dx

    解:

    设x=tant,-{\pi\over 2}\lt t\lt {\pi\over 2},则dx=sec^2tdt

    原式=\int {tan^3t+1\over (tan^2+1)^2}sec^2tdt

    =\int {tan^3t+1\over sec^2t}dt

    =\int {sin^3t+cos^3t\over cost}dt

    =\int {sin^3t\over cost}dt+\int cos^2tdt

    =\int {cos^2t-1\over cost}d(cost)+\int {1+cos2t\over 2}dt

    ={1\over 2}cos^2t-lncost+{1\over 2}t+{1\over 4}sin2t+C

    ={1\over 2(1+x^2)}-ln{1\over \sqrt{1+x^2}}+{1\over 2}arctanx+{x\over 2(1+x^2)}+C

    ={1+x\over 2(1+x^2)}+{1\over 2}ln(1+x^2)+{1\over 2}arctanx+C​


    2.\int x^2arctanxdx

    解:

    原式={1\over 3}\int arctanxd(x^3)

    ={1\over 3}(x^3arctanx-\int x^3{1\over 1+x^2}dx)

    ={1\over 3}x^3arctanx-{1\over 3}\int {x^3+x-x\over 1+x^2}dx

    ={1\over 3}x^3arctanx-{1\over 3}\int xdx+{1\over 3}\int {xdx\over 1+x^2}

    ={1\over 3}x^3arctanx-{1\over 6}x^2+{1\over 6}ln(1+x^2)+C


    2.\int xtan^2xdx

    解:

    原式=\int x(sec^2x-1)dx

    =\int xsec^2xdx-\int xdx

    =\int xd(tanx)-{1\over 2}x^2

    =xtanx-\int tanxdx-{1\over 2}x^2

    =xtanx+ln|cosx|-{1\over 2}x^2+C


    3.\int x^2cosxdx

    解:

    原式=\int x^2d(sinx)

    =x^2sinx-\int 2xsinxdx

    =x^2sinx+2\int xd(cosx)

    =x^2sinx+2xcosx-2\int cosxdx

    =x^2sinx+2xcosx-2sinx+C


    4.\int xsinxcosxdx

    解:

    原式={1\over 2}\int sin2xdx

    =-{1\over 4}\int xd(cos2x)

    =-{1\over 4}(xcos2x-\int cos2xdx)

    =-{1\over 4}xcos2x+{1\over 8}sin2x+C


    5.\int x^2cos^2{x\over 2}dx

    解:

    原式={1\over 2}\int x^2(1+cosx)dx

    ={1\over 2}\int x^2+{1\over 2}\int x^2cosxdx

    ={1\over 6}x^3+{1\over 2}\int x^2d(sinx)

    ={1\over 6}x^3+{1\over 2}(x^2sinx-\int 2xsinxdx)

    ={1\over 6}x^3+{1\over 2}x^2sinx+\int xd(cosx)

    ={1\over 6}x^3+{1\over 2}x^2sinx+xcosx-\int cosxdx

    ={1\over 6}x^3+{1\over 2}x^2sinx+xcosx-sinx+C


    6.\int xln(x-1)dx

    解:

    原式={1\over 2}\int ln(x-1)d(x^2)

    ={1\over 2}[x^2ln(x-1)-\int {x^2\over x-1}dx]

    ={1\over 2}[x^2ln(x-1)-\int {x^2-1+1\over x-1}dx]

    ={1\over 2}x^2ln(x-1)-{1\over 2}[\int (x+1)dx+\int {1\over x-1}dx]

    ={1\over 2}x^2ln(x-1)-{1\over 4}(x+1)^2-{1\over 2}ln(x-1)+C

    ={1\over 2}(x^2-1)ln(x-1)-{1\over 4}x^2-{1\over 2}x+C


    7.\int (x^2-1)sin2xdx

    解:

    原式=\int x^2sin2xdx-\int sin2xdx

    =-{1\over 2}\int x^2d(cos2x)+{1\over 2}cos2x

    =-{1\over 2}(x^2cos2x-\int 2xcos2xdx)+{1\over 2}cos2x

    =-{1\over 2}x^2cos2x+{1\over 2}\int xd(sin2x)+{1\over 2}cos2x

    =-{1\over 2}x^2cos2x+{1\over 2}(xsin2x-\int sin2xdx)+{1\over 2}cos2x

    =-{1\over 2}x^2cos2x+{1\over 2}xsin2x+{1\over 4}cos2x+{1\over 2}cos2x+C
    =-{1\over 2}(x^2-{3\over 2})cos2x+{x\over 2}sin2x+C


    8.\int {ln^3x\over x^2}dx

    解:

    原式=\int ln^3xd(-{1\over x})

    =-{1\over x}ln^3x+\int {3ln^2x\over x^2}dx

    =-{1\over x}ln^3x-3\int ln^2xd({1\over x})

    =-{1\over x}ln^3x-3[{1\over x}ln^2x-\int {2lnx\over x^2}dx]

    =-{1\over x}ln^3x-{3\over x}ln^2x-6\int lnxd({1\over x})

    =-{1\over x}ln^3x-{3\over x}ln^2x-6[{1\over x}lnx-\int {1\over x^2}dx]

    =-{1\over x}ln^3x-{3\over x}ln^2x-{6\over x}lnx-6{1\over x}+C

    =-{1\over x}(ln^3x+3ln^2x+6lnx+6)+C


    9.\int e^{\sqrt[3]{x}}dx

    解:

    设\sqrt[3]{x}=t,则x=t^3

    原式=\int e^t3t^2dt

    =3\int t^2d(e^t)

    =3(t^2e^t-\int e^t2tdt)

    =3t^2e^t-6\int td(e^t)

    =3t^2e^t-6te^t+6\int e^tdt

    =3t^2e^t-6te^t+6e^t+C

    =3e^{\sqrt[3]{x}}(\sqrt[3]{x^2}-2\sqrt[3]{x}+2)+C


    10.\int (arcsinx)^2dx

    解:

    原式=x(arcsinx)^2-\int {x2arcsinx\over \sqrt{1-x^2}}dx

    =x(arcsinx)^2+\int {arcsinx\over \sqrt{1-x^2}}d(1-x^2)

    =x(arcsinx)^2+\int 2arcsinxd\sqrt{1-x^2}

    =x(arcsinx)^2+2(\sqrt{1-x^2}arcsinx-\int \sqrt{1-x^2}{1\over \sqrt{1-x^2}}dx)

    =x(arcsinx)^2+2\sqrt{1-x^2}arcsinx-2x+C


    11.\int e^xsin^2xdx

    解:

    原式=\int e^x{1-cos2x\over 2}dx

    ={1\over 2}e^x-{1\over 2}\int e^xcos2xdx

    ={1\over 2}e^x-{1\over 2}\int e^xcos2xdx

    设I=\int e^xcos2xdx

    则I=\int cos2xd(e^x)

    =e^xcos2x-\int e^xd(cos2x)

    =e^xcos2x+2\int e^xsin2xdx

    =e^xcos2x+2\int sin2xd(e^x)

    =e^xcos2x+2sin2xe^x-2\int e^xd(sin2x)

    =e^xcos2x+2sin2xe^x-4\int cos2xe^xdx

    =e^xcos2x+2sin2xe^x-4I

    \therefore 5I=e^xcos2x+2sin2xe^x

    I={1\over 5}e^xcos2x+{2\over 5}e^xsin2x+C_1

    \therefore 原积分={1\over 2}e^x-{1\over 10}e^xcos2x-{1\over 5}e^xsin2x+C


    12.\int xln^2xdx

    解:

    原式=\int ln^2xd({x^2\over 2})

    ={x^2\over 2}ln^2x-\int {x^2\over 2}2lnx\cdot{1\over x}dx

    ={x^2\over 2}ln^2x-\int xlnxdx

    ={x^2\over 2}ln^2x-\int lnxd({x^2\over 2})

    ={x^2\over 2}ln^2x-{x^2\over 2}lnx+\int {x\over 2}dx

    ={x^2\over 2}ln^2x-{x^2\over 2}lnx+{x^2\over 4}+C

    ={x^2\over 4}(2ln^2x-2lnx+1)+C


    13.\int e^{\sqrt{3x+9}}dx

    解:

    设\sqrt{3x+9}=u,则x={1\over 3}(u^2-9)

    原式=\int e^u{2\over 3}udu

    =\int {2\over 3}ud(e^u)

    ={2\over 3}ue^u-{2\over 3}\int e^udu

    ={2\over 3}ue^u-{2\over 3}e^u+C

    ={2\over 3}e^{\sqrt{3x+9}}(\sqrt{3x+9}-1)+C


    14.\int {x^3\over x+3}dx

    解:

    原式=\int {x^3+27-27\over x+3}dx

    =\int {(x+3)(x^2-3x+9)-27\over x+3}dx

    =\int (x^2-3x+9)dx-\int {27\over x+3}dx

    ={1\over 3}x^3-{3\over 2}x^2+9x-27ln|x+3|+C


    15.\int {2x+3\over x^2+3x-10}dx

    解:

    原式=\int {d(x^2+3x-10)\over x^2+3x-10}

    =ln|x^2+3x-10|+C

    =ln|x-2|+ln|x+5|+C


    16.\int {x+1\over x^2-2x+5}dx

    解:

    原式=\int {x-1+2\over (x-1)^2+4}dx

    =\int {x-1\over (x-1)^2+4}dx+{1\over 2}\int {1\over ({x-1\over 2})^2+1}dx

    ={1\over 2}ln(x^2-2x+5)+{1\over 2}arctan{x-1\over 2}+C


    17.\int {3\over x^3+1}dx

    解:

    原式=\int {3\over (x+1)(x^2-x+1)}dx

    =\int ({1\over x+1}+{-x+2\over x^2-x+1})dx

    =ln|x+1|+\int {-x+{1\over 2}\over x^2-x+1}dx+\int {{3\over 2}dx\over x^2-x+1}

    =ln|x+1|-{1\over 2}\int {d(x^2-x+1)\over x^2-x+1}+{3\over 2}\int {d(x-{1\over 2})\over (x-{1\over 2})^2+({\sqrt{3}\over 2})^2}

    =ln|x+1|-{1\over 2}ln|x^2-x+1|+{3\over 2}{2\over \sqrt{3}}arctan{x-{1\over 2}\over {\sqrt{3}\over 2}}

    =ln{|x+1|\over \sqrt{x^2-x+1}}+\sqrt{3}arctan{2x-1\over \sqrt{3}}


    18.\int {x^2+1\over (x+1)^2(x-1)}dx

    分析:

    因式分解

    设{x^2+1\over (x+1)^2(x-1)}={A\over (x+1)^2}+{B\over x+1}+{C\over x-1}

    即A(x-1)+B(x^2-1)+C(x+1)^2=x^2+1

    整理得(B+C)x^2+(A+2C)x+C-A-B=x^2+1

    比较系数得\begin{cases}B+C=1 \\A+2C=0 \\C-A-B=1\end{cases}

    解得A=-1,B={1\over 2},C={1\over 2}

    即{x^2+1\over (x+1)^2(x-1)}={-1\over (x+1)^2}+{1\over 2(x+1)}+{1\over 2(x-1)}

    解:

    原式=\int [{-1\over (x+1)^2}+{1\over 2(x+1)}+{1\over 2(x-1)}]dx

    ={1\over x+1}+{1\over 2}ln|x+1|+{1\over 2}ln|x-1|+C

    ={1\over x+1}+{1\over 2}ln|x^2-1|+C


    19.\int {xdx\over (x+1)(x+2)(x+3)}

    分析:

    因式分解

    设{x\over (x+1)(x+2)(x+3)}={A\over x+1}+{B\over x+2}+{C\over x+3}

    即A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=x

    整理得(A+B+C)x^2+(5A+4B+3C)x+6A+3B+2C=x

    比较系数得\begin{cases}A+B+C=0 \\5A+4B+3C=1 \\6A+3B+2C=0\end{cases}

    解得A=-{1\over 2},B=2,C=-{3\over 2}

    即{x\over (x+1)(x+2)(x+3)}=-{1\over 2(x+1)}+{2\over x+2}-{3\over 2(x+3)}

    解:

    原式=\int [-{1\over 2(x+1)}+{2\over x+2}-{3\over 2(x+3)}]dx

    =-{1\over 2}ln|x+1|+2ln|x+2|-{3\over 2}ln|x+3|+C

    ={1\over 2}ln{(x+2)^4\over |x+1||x+3|^3}+C


    20.\int {x^5+x^4-8\over x^3-x}dx

    分析:

    x^5+x^4-8=(x^2+x+1)(x^3-x)+x^2+x-8

    即{x^5+x^4-8\over x^3-x}=x^2+x+1+{x^2+x-8\over x^3-x}

    设{x^2+x-8\over x^3-x}={A\over x}+{B\over x-1}+{C\over x+1}

    即A(x^2-1)+B(x^2+x)+C(x^2-x)=x^2+x-8

    比较系数得\begin{cases}A+B+C=1 \\-A=-8 \\B-C=1\end{cases}

    解得A=8,B=-3,C=-4

    即{x^5+x^4-8\over x^3-x}=x^2+x+1+{8\over x}-{3\over x-1}-{4\over x+1}

    解:

    原式=\int (x^2+x+1+{8\over x}-{3\over x-1}-{4\over x+1})dx

    ={1\over 3}x^3+{1\over 2}x^2+x+8ln|x|-3ln|x-1|-4ln|x+1|+C


    21.\int {dx\over (x^2+1)(x^2+x)}

    分析:

    设{1\over (x^2+1)(x^2+x)}={A\over x}+{B\over x+1}+{Cx+D\over x^2+1}

    即A(x+1)(x^2+1)+Bx(x^2+1)+x(x+1)(Cx+D)=1

    比较系数得\begin{cases}A+B+C=0 \\A+C+D=0 \\A+B+D=0 \\A=1\end{cases}

    解得A=1,B=-{1\over 2},C=-{1\over 2},D=-{1\over 2}

    解:

    原式=\int ({1\over x}-{1\over 2(x+1)}-{1+x\over 2(x^2+1)})dx

    =ln|x|-{1\over 2}ln|x+1|-{1\over 4}ln|x^2+1|-{1\over 2}arctanx+C


    22.\int {1\over x^4-1}dx

    分析:

    设{1\over (x-1)(x+1)(x^2+1)}={A\over x-1}+{B\over x+1}+{C\over x^2+1}

    即A(x+1)(x^2+1)+B(x-1)(x^2+1)+C(x^2-1)=1

    比较系数得\begin{cases}A+B=0 \\A-B+C=0 \\A-B-C=1\end{cases}

    解得A={1\over 4},B=-{1\over 4},C=-{1\over 2}

    解:

    原式=\int {dx\over (x-1)(x+1)(x^2+1)}

    ={1\over 4}\int {dx\over x-1}-{1\over 4}\int {dx\over x+1}-{1\over 2}\int {dx\over x^2+1}

    ={1\over 4}ln|x-1|-{1\over 4}ln|x+1|-{1\over 2}arctanx+C

    ={1\over 4}ln|{x-1\over x+1}|-{1\over 2}arctanx+ C


    23.\int {dx\over (x^2+1)(x^2+x+1)}

    分析:

    设{1\over (x^2+1)(x^2+x+1)}={Ax\over x^2+1}+{Bx+C\over x^2+x+1}

    即Ax(x^2+x+1)+(Bx+C)(x^2+1)=1

    比较系数得\begin{cases}A+B=0 \\A+C=0 \\C=1\end{cases}

    解得A=-1,B=1,C=1

    解:

    原式=\int ({-x\over x^2+1}+{x+1\over x^2+x+1})dx

    =-{1\over 2}\int ({dx^2\over x^2+1}+{x+{1\over 2}\over x^2+x+1}+{{1\over 2}\over x^2+x+1})dx

    =-{1\over 2}\int {d(x^2+1)\over x^2+1}+{1\over 2}{d(x^2+x+1)\over x^2+x+1}+{1\over 2}\int {dx\over (x+{1\over 2})^2+({\sqrt{3}\over 2})^2}

    =-{1\over 2}ln(x^2+1)+{1\over 2}ln(x^2+x+1)+{1\over 2}\times {2\over \sqrt{3}}arctan{x+{1\over 2}\over {\sqrt{3}\over 2}}+C

    ={1\over 2}ln{x^2+x+1\over x^2+1}+{\sqrt{3}\over 3}arctan{2x+1\over \sqrt{3}}+C


    24.\int {(x+1)^2\over (x^2+1)^2}dx

    解:

    原式=\int {x^2+1+2x\over (x^2+1)^2}dx

    =\int {1\over x^2+1}dx+\int{2x\over (x^2+1)^2}dx

    =arctanx+\int {d(x^2+1)\over (x^2+1)^2}

    =arctanx-{1\over x^2+1}+C


    25.\int {-x^2-2\over (x^2+x+1)^2}dx

    解:

    原式=\int {-x^2-x-1+x-1\over (x^2+x+1)^2}dx

    =-\int {dx\over x^2+x+1}+\int {x-1\over (x^2+x+1)^2}dx

    =-\int {dx\over (x+{1\over 2})^2+{3\over 4}}+\int {x+{1\over 2}\over (x^2+x+1)^2}dx-\int {{3\over 2}\over (x^2+x+1)^2}dx

    =-{2\over \sqrt{3}}arctan{x+{1\over 2}\over {\sqrt{3}\over 2}}+{1\over 2}\int {d(x^2+x+1)\over (x^2+x+1)^2}-{3\over 2}\int {d(x+{1\over 2})\over [(x+{1\over 2})^2+{3\over 4}]^2}

    =-{2\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}-{1\over 2}{1\over x^2+x+1}-{3\over 2}\times {1\over 2({\sqrt{3}\over 2})^2}\times [{x+{1\over 2}\over (x+{1\over 2})^2+({\sqrt{3}\over 2})^2}+{2\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}]+C

    =-{2\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}-{1\over 2(x^2+x+1)}-{2x+1\over 2(x^2+x+1)}-{2\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}+C

    =-{4\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}-{x+1\over x^2+x+1}+C


    26.\int {dx\over 3+sin^2x}

    解:

    原式=\int {dx\over sin^2x(3csc^2x+1)}

    =\int {csc^2xdx\over 3csc^2x-3+4}

    =-\int {d(cotx)\over 3cot^2x+4}

    =-{1\over 3}\int {d(cotx)\over cot^2x+({2\over \sqrt{3}})^2}

    =-{1\over 3}\times {\sqrt{3}\over 2}arctan{cotx\over {2\over \sqrt{3}}}+C

    =-{1\over 2\sqrt{3}}arctan{\sqrt{3}cotx\over 2}+C


    27.\int {dx\over 3+cosx}

    解:

    原式=\int {dx\over 2+1+cosx}

    =\int {dx\over 2+2cos^{x\over 2}}

    =\int {d({x\over 2})\over 1+cos^2{x\over 2}}

    =\int {d({x\over 2})\over cos^{x\over 2}(sec^2{x\over 2}+1)}

    =\int {d(tan{x\over 2})\over 2+tan^2{x\over 2}}

    ={1\over \sqrt{2}}arctan{tan{x\over 2}\over \sqrt{2}}+C

    相关文章

      网友评论

        本文标题:高等数学:不定积分题选(2)

        本文链接:https://www.haomeiwen.com/subject/drqacqtx.html