美文网首页自定义view相关UI & Material Design自定义控件
自定义控件知识储备-View的绘制流程

自定义控件知识储备-View的绘制流程

作者: 蘑菇君的小小世界 | 来源:发表于2016-05-29 00:21 被阅读2543次

    在自定义控件这个学习系列里,首先写篇文章记录一下View的绘制流程,压压惊:-P。也为以后的自定义控件实践打个基础。虽然讲解View工作流程的文章很多,其中不乏很多精品文章,不过自己能从中理清思路,以自己之言总结出来,也是十分必要的。好的,我要开始装...不,总结了。

    1. 前言

    当我们打开手机,开始看朋友圈,刷微博的时候,我们有考虑过在我们眼前的一个个View是如何从无到有的展示在我们眼前的么?有考虑过它们的感受么?(神经病才去考虑(ノಠಠ)ノ彡┻━┻......)。

    当我们在一张纸上画画的时候,哪怕是简单的一只小鸡,我们也不得不考虑下面几点:

    • 这只鸡得画多大呀?多宽,多高?不能大的超过纸的范围吧?
    • 这只鸡画在纸的哪里呢?是纸的中间还是靠下面一点呢?
    • 确定好大小和位置了,该怎么画呢?公鸡母鸡?这只鸡是什么形状(当然是鸡形)?什么颜色?

    其实在屏幕上“画”一个View跟上述的流程也很相似。同样是经过了测量流程、布局流程以及绘制流程。我们都知道,Android界面布局是以一棵树的结构形式展现的,看我们的xml布局文件也看的出来。而绘制出整个界面肯定是要遍历整个View树,对这棵树的所有节点分别进行测量,布局和绘制。万事皆有源头,绘制这棵树得从根节点顶级View开始画起,也就是DecorView。至于啥是DecorView,大家可以自行去查阅资料。

    系统内部会依次调用DecorView的measurelayoutdraw三大流程方法。measure方法又会调用onMeasure方法对它所有的子元素进行测量,如此反复调用下去就能完成整个View树的遍历测量。同样的,layoutdraw两个方法里也会调用相似的方法去对整个View树进行遍历布局和绘制。

    下面就以这三个流程来了解一下View从无到有的不容易。

    后退,我要开始装逼了

    2. 测量流程-measure

    测量流程得分情况来看,如果是单身View,那自然是没话说,自己照顾好自己,本分的测量好自己就行。而如果是为人父母的ViewGroup,那就得顾家了,除了测量好自己,还得去调用孩子们的measure方法让孩子们都测量好自己。甚至很多时候,ViewGroup得先测量好孩子们,最后才能确定自己的测量大小。一把辛酸泪...(ノへ ̄、)

    下面分别来看看View和ViewGroup的测量过程:

    2.1 View的measure过程

    View类的measure方法的签名如下:

    public final void measure(int widthMeasureSpec, int heightMeasureSpec)
    

    看到这个方法,我得提出两个问题:

    1. 形参widthMeasureSpecheightMeasureSpec是几个意思?是用来测量自身大小的宽高么?
    2. measure方法是final修饰的,那怎么通过重写此方法来实现自定义控件的测量方式呢?

    要回答第1个问题,首先得弄清楚:在界面的绘制过程中,View的这个方法是被它的父控件调用的,也就是说widthMeasureSpecheightMeasureSpec是通过父控件传递进来的,如果这两个参数是完全用来决定孩子View的大小,那孩子们也太没主动权了。

    呵呵哒

    事实上,这两个参数在很大程度上是决定了一个View的尺寸的,只不过孩子View可能各有各的特点,它们是能根据自身的特点来进行调整的,具体的呢以后再说。先来具体的看看MeasureSpec:

    测量规格MeasureSpec

    widthMeasureSpec这样的32位的int类型的数肯定是有自己的故事滴,它的高2位代表测量模式Mode,低30位代表测量大小Size。系统提供了一个MeasureSpec类来对这个参数进行操作,代码如下:

      public static class MeasureSpec {
      
            private static final int MODE_SHIFT = 30;
            private static final int MODE_MASK  = 0x3 << MODE_SHIFT;
            public static final int UNSPECIFIED = 0 << MODE_SHIFT;
            public static final int EXACTLY     = 1 << MODE_SHIFT;
            public static final int AT_MOST     = 2 << MODE_SHIFT;
    
            
            public static int makeMeasureSpec(int size, int mode) {
                if (sUseBrokenMakeMeasureSpec) {
                    return size + mode;
                } else {
                    return (size & ~MODE_MASK) | (mode & MODE_MASK);
                }
            }
    
           
            public static int getMode(int measureSpec) {
                return (measureSpec & MODE_MASK);
            }
    
           
            public static int getSize(int measureSpec) {
                return (measureSpec & ~MODE_MASK);
            }
        }
    
    

    上面的代码也不复杂,都是通过位运算来进行操作的。(我在平时位运算用的少,所以我还得慢慢捋一捋才看的明白。╥﹏╥...)不过,这样做的好处就是更省内存,因为要是我来做的话,肯定是为这样的测量规格定义一个类,里面有mode和size两个属性,这样每次就会new很多测量规格的对象了。

    好了,喝口水,接着往下说。既然测量规格是由测量模式mode和测量大小size组成的,size好说,那测量模式mode代表什么含义呢。由上面的代码可知,测量模式有三类:

    • UNSPECIFIED

      父控件不对你有任何限制,你想要多大给你多大,想上天就上天。这种情况一般用于系统内部,表示一种测量状态。(这个模式主要用于系统内部多次Measure的情形,并不是真的说你想要多大最后就真有多大)

    • EXACTLY

      父控件已经知道你所需的精确大小,你的最终大小应该就是这么大。

    • AT_MOST

      你的大小不能大于父控件给你指定的size,但具体是多少,得看你自己的实现。

    上面的三种模式的区别我们弄清楚了,但是父控件是怎样给它的孩子们构建好测量大小和测量模式的呢?这其中必有蹊跷。好吧,冤有头债有主,我们得去ViewGroup类里去找找看。ViewGroup里提供了一个静态方法getChildMeasureSpec用来获取子控件的测量规格,下面是代码和详细注释:

        /**
         *
         * 目标是将父控件的测量规格和child view的布局参数LayoutParams相结合,得到一个
         * 最可能符合条件的child view的测量规格。  
         
         * @param spec 父控件的测量规格
         * @param padding 父控件里已经占用的大小
         * @param childDimension child view布局LayoutParams里的尺寸
         * @return child view 的测量规格
         */
        public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
            int specMode = MeasureSpec.getMode(spec); //父控件的测量模式
            int specSize = MeasureSpec.getSize(spec); //父控件的测量大小
    
            int size = Math.max(0, specSize - padding);
    
            int resultSize = 0;
            int resultMode = 0;
    
            switch (specMode) {
            // 当父控件的测量模式 是 精确模式,也就是有精确的尺寸了
            case MeasureSpec.EXACTLY:
                //如果child的布局参数有固定值,比如"layout_width" = "100dp"
                //那么显然child的测量规格也可以确定下来了,测量大小就是100dp,测量模式也是EXACTLY
                if (childDimension >= 0) {
                    resultSize = childDimension;
                    resultMode = MeasureSpec.EXACTLY;
                } 
                
                //如果child的布局参数是"match_parent",也就是想要占满父控件
                //而此时父控件是精确模式,也就是能确定自己的尺寸了,那child也能确定自己大小了
                else if (childDimension == LayoutParams.MATCH_PARENT) {
                    resultSize = size;
                    resultMode = MeasureSpec.EXACTLY;
                }
                //如果child的布局参数是"wrap_content",也就是想要根据自己的逻辑决定自己大小,
                //比如TextView根据设置的字符串大小来决定自己的大小
                //那就自己决定呗,不过你的大小肯定不能大于父控件的大小嘛
                //所以测量模式就是AT_MOST,测量大小就是父控件的size
                else if (childDimension == LayoutParams.WRAP_CONTENT) {
                    resultSize = size;
                    resultMode = MeasureSpec.AT_MOST;
                }
                break;
    
            // 当父控件的测量模式 是 最大模式,也就是说父控件自己还不知道自己的尺寸,但是大小不能超过size
            case MeasureSpec.AT_MOST:
                //同样的,既然child能确定自己大小,尽管父控件自己还不知道自己大小,也优先满足孩子的需求
                if (childDimension >= 0) {
                    resultSize = childDimension;
                    resultMode = MeasureSpec.EXACTLY;
                } 
                //child想要和父控件一样大,但父控件自己也不确定自己大小,所以child也无法确定自己大小
                //但同样的,child的尺寸上限也是父控件的尺寸上限size
                else if (childDimension == LayoutParams.MATCH_PARENT) {
                    resultSize = size;
                    resultMode = MeasureSpec.AT_MOST;
                }
                //child想要根据自己逻辑决定大小,那就自己决定呗
                else if (childDimension == LayoutParams.WRAP_CONTENT) {
                    resultSize = size;
                    resultMode = MeasureSpec.AT_MOST;
                }
                break;
    
            // Parent asked to see how big we want to be
            case MeasureSpec.UNSPECIFIED:
                if (childDimension >= 0) {
                    // Child wants a specific size... let him have it
                    resultSize = childDimension;
                    resultMode = MeasureSpec.EXACTLY;
                } else if (childDimension == LayoutParams.MATCH_PARENT) {
                    // Child wants to be our size... find out how big it should
                    // be
                    resultSize = 0;
                    resultMode = MeasureSpec.UNSPECIFIED;
                } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                    // Child wants to determine its own size.... find out how
                    // big it should be
                    resultSize = 0;
                    resultMode = MeasureSpec.UNSPECIFIED;
                }
                break;
            }
            return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
        }
    

    根据上面的代码,可以列出默认情况下,View的测量规格的生成规则:

    测量规格图

    (注:图片来自任玉刚博客 任玉刚:Android View系统解析(下)

    现在我们知道了,View的测量规格是由父控件的测量规格自身的LayoutParams共同决定的。并且在普通情况下,会满足上面表格里的规则。但是那是在普通情况下,而在我们自定义控件中,有时候是根据特有的逻辑去得到测量规格的。所以,掌握好原理,以不变应万变才是上策。

    解释完MeasureSpec,就让我们回到一开始提出的第2个问题:

    1. measure方法是final修饰的,那怎么通过重写此方法来实现自定义控件的测量方式呢?

    我们来看看measure方法的实现:

    public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
            
                ...
                
                int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
                if (cacheIndex < 0 || sIgnoreMeasureCache) {
                    // measure ourselves, this should set the measured dimension flag back
                    onMeasure(widthMeasureSpec, heightMeasureSpec);
                    mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
                } else {
                    long value = mMeasureCache.valueAt(cacheIndex);
                    // Casting a long to int drops the high 32 bits, no mask needed
                    setMeasuredDimensionRaw((int) (value >> 32), (int) value);
                    mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
                }
    
                // flag not set, setMeasuredDimension() was not invoked, we raise
                // an exception to warn the developer
                if ((mPrivateFlags & PFLAG_MEASURED_DIMENSION_SET) != PFLAG_MEASURED_DIMENSION_SET) {
                    throw new IllegalStateException("onMeasure() did not set the"
                            + " measured dimension by calling"
                            + " setMeasuredDimension()");
                }
    
                mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
            }
    
           ...
        }
    

    看到了我们熟悉的onMeasure方法啦,所以我们想要实现自己自定义控件的测量方式,就得重写onMeasure方法。再来跟进看看onMeasure方法的实现:

    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
            setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                    getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
        }
    

    这方法一层嵌一层的,还是从里往外接着看吧,对于getSuggestedMinimumWidthgetSuggestedMinimumHeight方法,顾名思义,就是得到建议的最小的宽/高。什么意思呢?以getSuggestedMinimumWidth为例:

     protected int getSuggestedMinimumWidth() {
            return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
        }
    

    mMinWidth属性对应的就是xml布局里的android:minWidth属性,设置最小宽度。mBackground.getMinimumWidth()方法返回的就是View背景Drawable的原始宽度,这个宽度跟背景的类型有关。比如我们给View的背景设置一张图片,那这个方法返回的宽度就是图片的宽度,而如果我们给View背景设置的是颜色,那么这个方法返回的宽度则是0。具体的大家可以自行查阅Drawable尺寸的相关资料。所以,这个方法的返回的宽度是:如果View没有设置背景,那就返回xml布局里的android:minWidth属性定义的值,默认为0;如果View设置了背景,就返回背景的宽度和mMinWidth中的最大值。

    再来看getDefaultSize方法:

    public static int getDefaultSize(int size, int measureSpec) {
            int result = size;
            int specMode = MeasureSpec.getMode(measureSpec);
            int specSize = MeasureSpec.getSize(measureSpec);
    
            switch (specMode) {
            case MeasureSpec.UNSPECIFIED:
                result = size;//这里的size就是上面getSuggestedMinimumWidth/height的返回值
                break;
            case MeasureSpec.AT_MOST:
            case MeasureSpec.EXACTLY:
                result = specSize;//测量规格里的尺寸
                break;
            }
            return result;
        }
    

    可以看出,View在当测量模式为UNSPECIFIED时,返回的就是上面getSuggestedMinimumWidth/Height()方法里的大小。其实这对我们自定义控件并没有什么影响,因为上文有提到过,UNSPECIFIED一般用于系统内部的测量过程,对我们正常逻辑没什么影响。我们的重点还是应该放在AT_MOSTEXACTLY两种情况下。对于这两种情况,getDefaultSize十分简单粗暴,直接返回了specSize,也就是View的测量规格里的测量尺寸。

    真相只有一个 ,不知道大家在看完上面的代码以后,有没有发现一个“碧油鸡”,在AT_MOSTEXACTLY两种情况下返回的尺寸竟然都是specSize,这意味着什么呢?

    自定义View控件时,我们需要重写onMeasure方法并设置wrap_content时自身的大小。否则在xml布局中使用wrap_content时与match_parent的效果一样。

    为什么呢?如果View在xml布局中使用wrap_content,根据上面提到的规则表格,它的测量模式是AT_MOST模式,测量尺寸specSize是parentSize,而getDefaultSize方法在AT_MOST里直接返回specSize,也就是等于父容器的剩余空间大小,这和match_parent是一样的。所以我们需要自己来处理AT_MOST模式下的宽高。

    一个重写onMeasure方法来支持wrap_content属性的模版如下:

    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
            
            super.onMeasure(widthMeasureSpec, heightMeasureSpec);
            
            int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec);
            int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec);
            int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec);
            int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec);
            
            int wrapWidth,wrapHeight;//根据View的逻辑得到,比如TextView根据设置的文字计算wrap_content时的大小
            
            if(widthSpecMode == MeasureSpec.AT_MOST && heightSpecMode == MeasureSpec.AT_MOST){
                setMeasuredDimension(wrapWidth, wrapHeight);
            }else if(widthSpecMode == MeasureSpec.AT_MOST){
                setMeasuredDimension(wrapWidth, heightSpecSize);
            }else if(heightSpecMode == MeasureSpec.AT_MOST){
                setMeasuredDimension(widthSpecSize, wrapHeight);
            }
    }
    

    以上代码可以直接应用到我们的自定义控件里去,当然最重要的还是大家得对AT_MOST模式留点心,记得对它特别对待就行。

    好的,我们再看最外层的方法setMeasuredDimension

    protected final void setMeasuredDimension(int measuredWidth, int measuredHeight) {
            boolean optical = isLayoutModeOptical(this);
            if (optical != isLayoutModeOptical(mParent)) {
                Insets insets = getOpticalInsets();
                int opticalWidth  = insets.left + insets.right;
                int opticalHeight = insets.top  + insets.bottom;
    
                measuredWidth  += optical ? opticalWidth  : -opticalWidth;
                measuredHeight += optical ? opticalHeight : -opticalHeight;
            }
            setMeasuredDimensionRaw(measuredWidth, measuredHeight);
        }
        
     private void setMeasuredDimensionRaw(int measuredWidth, int measuredHeight) {
            mMeasuredWidth = measuredWidth;
            mMeasuredHeight = measuredHeight;
    
            mPrivateFlags |= PFLAG_MEASURED_DIMENSION_SET;
        }    
    

    setMeasuredDimension方法里调用了setMeasuredDimensionRaw方法,在这个方法里面,终于看到了我们熟悉的mMeasuredWidthmeasuredHeight的赋值语句。从此以后,我们就可以安心的调用View的getMeasureWidth()getMeasureHeight()方法了!(≧∇≦)ノ

    2.2 ViewGroup的measure过程

    ViewGroup并没有重写View的onMeasure方法,这需要它的子类去根据相应的逻辑去实现,比如LinearLayout与RelativeLayout对child view的测量逻辑显然是不同的。不过,ViewGroup倒是提供了一个measureChildren的方法,貌似可以用来测量child的样子,看看源码:

    protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
            final int size = mChildrenCount;
            final View[] children = mChildren;
            for (int i = 0; i < size; ++i) {
                final View child = children[i];
                if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                    measureChild(child, widthMeasureSpec, heightMeasureSpec);
                }
            }
        }
    

    上面的代码逻辑很清晰,就是遍历每个孩子,调用measureChild方法对其进行测量,接着来看看measureChild:

    protected void measureChild(View child, int parentWidthMeasureSpec,
                int parentHeightMeasureSpec) {
            final LayoutParams lp = child.getLayoutParams();
    
            final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                    mPaddingLeft + mPaddingRight, lp.width);
            final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                    mPaddingTop + mPaddingBottom, lp.height);
    
            child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        }
    

    measureChild方法里,会取出child的LayoutParams,再结合父控件的测量规格和已被占用的空间Padding,作为参数传递给getChildMeasureSpec方法,在getChildMeasureSpec里会组合生成child控件的测量规格。getChildMeasureSpec方法的逻辑在上面的MeasureSpec部分有详细说明。最后,当然还是得调用child的measure方法啦,让孩子根据父母的指引去测量自己。

    在我看来,我们在自己自定义控件时,上面的这两个方法几乎不会用到。因为measureChildren太过简单粗暴,我们一般都会考虑孩子们之间的逻辑关系(顺序、间隔等),再计算他们的测量规格。不过这个方法也给我们一点启示,就是:

    测量子元素时,对可见性为GONE的View要做特殊处理,一般来说就是跳过对它们的测量,来优化布局。

    measureChild方法只考虑了父控件的padding,但是没考虑到child view的margin,这就会导致child view在使用match_parent属性的时候,margin属性会有问题。(什么?你说你自定义的ViewGroup对孩子不支持margin属性不就不会有问题了么...是是是,那当我没说....)当然,ViewGroup里为此也提供了另一个测量child的方法:

    protected void measureChildWithMargins(View child,
                int parentWidthMeasureSpec, int widthUsed,
                int parentHeightMeasureSpec, int heightUsed) {
            final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
    
            final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                    mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                            + widthUsed, lp.width);
            final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                    mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                            + heightUsed, lp.height);
    
            child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
        }
    

    measureChildWithMargins方法,顾名思义,比measureChild方法多考虑了个margin。看源码也看得出来,的确是这样。所以一般情况下,这个方法使用的更多一些。

    3.布局流程-layout

    布局的流程就没有测量流程那么“蜿蜒曲折”了。对于单身View来说,调用layout方法确定好自己的位置,设置好位置属性的值(mLeft/mRgiht,mTop/mBottom)就行。而对于父母ViewGroup来说,还得通过调用onLayout方法帮助孩子们确定好位置。来看看View的layout方法:

    public void layout(int l, int t, int r, int b) {
            if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
                onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
                mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
            }
    
            int oldL = mLeft;
            int oldT = mTop;
            int oldB = mBottom;
            int oldR = mRight;
    
            boolean changed = isLayoutModeOptical(mParent) ?
                    setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
    
            if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
                onLayout(changed, l, t, r, b);
                mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
    
                ListenerInfo li = mListenerInfo;
                if (li != null && li.mOnLayoutChangeListeners != null) {
                    ArrayList<OnLayoutChangeListener> listenersCopy =
                            (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
                    int numListeners = listenersCopy.size();
                    for (int i = 0; i < numListeners; ++i) {
                        listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
                    }
                }
            }
    
            mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
            mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
        }
        
     protected boolean setFrame(int left, int top, int right, int bottom) {
            boolean changed = false;
    
            if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
                changed = true;
    
                ...
    
                // Invalidate our old position
                invalidate(sizeChanged);
    
                mLeft = left;
                mTop = top;
                mRight = right;
                mBottom = bottom;
                mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);
    
                ...
            }
            return changed;
        }
    

    从上面的代码,能看到layout方法首先会调用setFrame方法来给View的四个顶点属性赋值,即mLeft,mRight,mTop,mBottom四个值,此时这个View的位置就确定了。同时我们也就能通过调用getWidth()getHeight()方法来获取View的实际宽高了。

    接下来,onLayout方法才会被调用,这也意味着我们在自定义ViewGroup时,想要重写onLayout方法给我们的子元素定位,是可以直接调用getWidth()getHeight()方法来获取ViewGroup的真实宽高的。在View类里的onLayout方法是个空方法,而在ViewGroup方法里声明成了抽象方法,所以继承ViewGroup的类都得自己去实现自己定位子元素的逻辑。

    最后,在layout方法的最后我们能看到一个OnLayoutChangeListener的集合,看名字我们也猜得出,这是View位置发生改变时的回调接口。所以我们可以通过addOnLayoutChangeListener方法可以监听一个View的位置变化,并做出想要的响应。(看源码的时候才发现这个回调接口的,以前都不知道。新技能get!︿( ̄︶ ̄)︿)

    4.绘制流程-draw

    绘制的流程也就是通过调用View的draw方法实现的。draw方法里的逻辑看起来更清晰,我就不贴源码了。一般是遵循下面几个步骤:

    1. 绘制背景 -- drawBackground()
    2. 绘制自己 -- onDraw()
    3. 绘制孩子 -- dispatchDraw()
    4. 绘制装饰 -- onDrawScrollbars()

    由于不同的控件都有自己不同的绘制实现,所以View的onDraw方法肯定是空方法。而ViewGroup由于需要照顾孩子们的绘制,所以肯定在dispatchDraw方法里遍历调用了child的draw方法。不信?不信咱来看看ViewGroup里重写的dispatchDraw方法:

     protected void dispatchDraw(Canvas canvas) {
            
            ...
        
            for (int i = 0; i < childrenCount; i++) {
                int childIndex = customOrder ? getChildDrawingOrder(childrenCount, i) : i;
                final View child = (preorderedList == null)
                        ? children[childIndex] : preorderedList.get(childIndex);
                if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) {
                    more |= drawChild(canvas, child, drawingTime);
                }
            }
            
            ...
        }    
            
    protected boolean drawChild(Canvas canvas, View child, long drawingTime) {
            return child.draw(canvas, this, drawingTime);
        }
    

    ViewGroup里的dispatchDraw方法遍历调用drawChild方法,drawChild方法又调用了child的draw(canvas, this, drawingTime)方法,最后还是调用到了child的draw(canvas)方法。如此这般,绘制流程也就一层一层的传递下去了。

    好的,说完了...(*゚ー゚).........................................

    5.总结

    我已经无力总结了,没想到一篇总结的文章写了我两天半... 哭泣

    。不过,自己在总结的过程中确实也学到了蛮多,加深了对View的绘制流程的理解,也弄清楚了一些模糊的知识点。当然了,也希望我的文章能对正在学Android开发的小伙伴们有所帮助。

    当然了,这些都属于自定义控件的基本功,还需要在实践中多积累一些相关的经验,并逐渐做到融会贯通,这样才能提高自己的水平。keep going!

    6.预告

    下一篇文章打算记录LayoutParams相关的一些知识。敬请关注......

    我是蘑菇君,我为自己带盐

    7.参考资料

    相关文章

      网友评论

      • 899e2d74bdeb:文字很好,安卓小白,请教一下
        一个重写onMeasure方法来支持wrap_content属性的模版如下:
        请问,这个方法不会把match_parent也覆盖了?如何区分这两种情况;
      • f6461ee760bf:蘑菇君。。。偶看下来香菇,蓝瘦,还有好长的路要走keep fighting!!!
        蘑菇君的小小世界: @jiamacxygmailco keep fighting!
      • Alex_Cin:像楼主这么好的同学,我只能打赏了。原谅我,自定义viewgroup经验不足。
      • 呃哈哈:padding 的组成 mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin 楼主可以给个图吗讲解一下吗?
        2792e83dfbf5:300-40-20
        呃哈哈:@蘑菇君520 谢了
        蘑菇君的小小世界:@我是不是你大爷 额,这个图你可以自己去画一下哈,主要是弄清楚父控件的padding和子控件的margin属性的含义,可以去查一下解释。计算那个padding的目的就是为了获取子控件最大能占据多大空间,你想象一下:如果一个父控件比如FrameLayout宽度为300,上下左右的padding都为20,子控件的宽度布局属性设置为match_parent,上下左右的margin都为10,那么这个子控件的最大能占据的空间也就是300-20-10了。
      • 呃哈哈:关于padding还是不太懂 楼主可以画图讲解一下吗?更容易懂
      • 就是这个强:博主学安卓多久了?
        蘑菇君的小小世界:@简述安卓 短短续续的学,大概2年多吧……
      • shunxir:也是6666还为人父母的view不过我就喜欢这种叙述方式,接地气 :relaxed:
        蘑菇君的小小世界:@shunxir 哈哈,谢谢鼓励,我会继续接着地气的(●°u°●)​ 」

      本文标题:自定义控件知识储备-View的绘制流程

      本文链接:https://www.haomeiwen.com/subject/dzfqdttx.html