美文网首页
线性代数的几何理解

线性代数的几何理解

作者: 照膽 | 来源:发表于2018-09-01 22:51 被阅读0次

    矩阵:由基组成,表示标准基变换后的基
    列向量:基
    矩阵乘法:矩阵乘向量:矩阵变换作用于某向量;矩阵乘矩阵:两次线性变化相继作用。

    空间:所有给定向量的线性组合 av+bw

    线性相关:减少一个向量,但不减小张成的空间

    行列式:变换后,向量围成空间的面积/体积。。。

    行列式=0:进行线性变换后,空间有维度被压缩。且无法被还原,即逆矩阵不存在。

    秩:空间压缩后的,新空间的维度。

    零空间/核:变换后落在原点的向量的集合

    相似矩阵:将矩阵A先变为我们的坐标系,再做一个线性变换A,再变回她的坐标系。得到矩阵B,B即是用她语言描述的在我们坐标系里的变换矩阵。,则B与A相似,用B乘以她坐标的任意向量

    特征向量:用矩阵进行变换后,和原来坐标中一样不变的方向(向量)
    特征值:不变的方向(特征向量)拉伸的倍数。

    求特征值的过程:矩阵减去特征值后的变化刚好被压缩维度。

    矩阵对角化:将原来的变换矩阵变为按矩阵特征基变化的矩阵

    相关文章

      网友评论

          本文标题:线性代数的几何理解

          本文链接:https://www.haomeiwen.com/subject/ezcpwftx.html