Glide源码阅读笔记

作者: toothpickTina | 来源:发表于2017-12-27 15:32 被阅读0次

    原文可以看我的博客

    基于v4最新版本的Glide解析, 从最开始的简单加载开始看源码, 仅作个人记录.

    一个Glide加载图片的核心用法如下:

    GlideApp.with(this)
                    .load(uri)
                    .into(imageViewLookup);
    

    我们通过一步步链式调用进去查看

    Glide.with : 同步生命周期

    private RequestManager supportFragmentGet(@NonNull Context context, @NonNull FragmentManager fm,
          @Nullable Fragment parentHint) {
        SupportRequestManagerFragment current = getSupportRequestManagerFragment(fm, parentHint);
        RequestManager requestManager = current.getRequestManager();
        if (requestManager == null) {
          Glide glide = Glide.get(context);
          requestManager =
              factory.build(
                  glide, current.getGlideLifecycle(), current.getRequestManagerTreeNode(), context);
          current.setRequestManager(requestManager);
        }
        return requestManager;
      }
    

    通过getSupportRequestManagerFragment(final FragmentManager fm, Fragment parentHint)方法调用, 在Glide.with(context)中传入的组件中,
    新增一个子Fragment, 这个Fragment类根据传入的是support.fragment或者是fragment来决定是RequestManagerFragment还是SupportRequestManagerFragment,然后通过current.SupportRequestManagerFragment() 将Glide的生命周期与这个子fragment的声明周期绑定, 实现了组件与Glide加载同步的功能

    图片的加载

    我们通过暴露的into的API跳进去, 最终到了RequestBuilder.into(@NonNull Y target, @Nullable RequestListener<TranscodeType> targetListener, @NonNull RequestOptions options), 详细代码如下:

    private <Y extends Target<TranscodeType>> Y into(
          @NonNull Y target,
          @Nullable RequestListener<TranscodeType> targetListener,
          @NonNull RequestOptions options) {
        // 判断是否在主线程
        Util.assertMainThread();
        // target是否为空判断
        Preconditions.checkNotNull(target);
        // load()方法是否已经被调用, 如果没被调用, 则将抛出异常
        if (!isModelSet) {
          throw new IllegalArgumentException("You must call #load() before calling #into()");
        }
        options = options.autoClone();
        // 创建请求
        Request request = buildRequest(target, targetListener, options);
        // 获取target当前的请求
        Request previous = target.getRequest();
        // 如果请求相同, 而且当前请求设置可以使用内存缓存
        // 则请求回收
        if (request.isEquivalentTo(previous)
            && !isSkipMemoryCacheWithCompletePreviousRequest(options, previous)) {
          request.recycle();
          // If the request is completed, beginning again will ensure the result is re-delivered,
          // triggering RequestListeners and Targets. If the request is failed, beginning again will
          // restart the request, giving it another chance to complete. If the request is already
          // running, we can let it continue running without interruption.
          // 如果当前请求不在执行, 则会重新开始请求
          if (!Preconditions.checkNotNull(previous).isRunning()) {
            // Use the previous request rather than the new one to allow for optimizations like skipping
            // setting placeholders, tracking and un-tracking Targets, and obtaining View dimensions
            // that are done in the individual Request.
            previous.begin();
          }
          return target;
        }
        requestManager.clear(target);
        target.setRequest(request);
        // 请求追踪
        requestManager.track(target, request);
    
        return target;
      }
    

    然后通过requestManager.track()发起Request执行, 如果当前状态(status)既不是RUNNING也不是COMPLETE, 则会执行onSizeReady, 到这里直到Engine.load()才开始资源的加载, 相关的代码及注释如下:

    public <R> LoadStatus load(
          GlideContext glideContext,
          Object model,
          Key signature,
          int width,
          int height,
          Class<?> resourceClass,
          Class<R> transcodeClass,
          Priority priority,
          DiskCacheStrategy diskCacheStrategy,
          Map<Class<?>, Transformation<?>> transformations,
          boolean isTransformationRequired,
          boolean isScaleOnlyOrNoTransform,
          Options options,
          boolean isMemoryCacheable,
          boolean useUnlimitedSourceExecutorPool,
          boolean useAnimationPool,
          boolean onlyRetrieveFromCache,
          ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();
        // 创建缓存key
        EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations,
            resourceClass, transcodeClass, options);
    
        // 从存活资源内读取数据, 内部缓存由value为弱引用对象的map做管理, 做手动的计数管理
        // 当资源计数为0时, 则回收
        EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
        if (active != null) {
          // 如果命中, 则回调加载
          cb.onResourceReady(active, DataSource.MEMORY_CACHE);
          if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Loaded resource from active resources", startTime, key);
          }
          return null;
        }
    
        // 获取内存缓存数据
        // 当内存缓存中有命中, 则删除Cache, 并将目标资源加到activeResources中
        EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
        if (cached != null) {
          // 如果命中, 则回调加载
          cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
          if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Loaded resource from cache", startTime, key);
          }
          return null;
        }
        //  EngineJob : 调度DecodeJob,添加,移除资源回调,并notify回调
        EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
        // 当前存活的资源和内存缓存都没有的情况下
        // 1. 先判断是否有资源(resouce什么时候回调true 不明), 如果有, 则回调加载
        // 2. 如果加载失败, 则加载抛出异常
        // 3. 否则, 在资源回调中添加
        if (current != null) {
          current.addCallback(cb);
          if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Added to existing load", startTime, key);
          }
          // 返回当前的LoadStatus
          return new LoadStatus(cb, current);
        }
        // 当资源回调中都没有的情况
        EngineJob<R> engineJob =
            engineJobFactory.build(
                key,
                isMemoryCacheable,
                useUnlimitedSourceExecutorPool,
                useAnimationPool,
                onlyRetrieveFromCache);
    
        // 实现了Runnable接口,调度任务的核心类,整个请求的繁重工作都在这里完成:处理来自缓存或者原始的资源,应用转换动画以及transcode。
        // 负责根据缓存类型获取不同的Generator加载数据,数据加载成功后回调DecodeJob的onDataFetcherReady方法对资源进行处理
        DecodeJob<R> decodeJob =
            decodeJobFactory.build(
                glideContext,
                model,
                key,
                signature,
                width,
                height,
                resourceClass,
                transcodeClass,
                priority,
                diskCacheStrategy,
                transformations,
                isTransformationRequired,
                isScaleOnlyOrNoTransform,
                onlyRetrieveFromCache,
                options,
                engineJob);
    
        jobs.put(key, engineJob);
    
        engineJob.addCallback(cb);
        engineJob.start(decodeJob);
    
        if (Log.isLoggable(TAG, Log.VERBOSE)) {
          logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
      }
    

    这里的流程图可以看下图:


    Engine.load()流程图

    资源图片的缓存

    当无法再当前存活的资源以及缓存内找到对应key的资源时, 会通过engineJob开始执行decodeJob, 所以我们可以直接看decodeJobrun().

    /**
       * 根据不同的runReason执行不同任务
       */
      private void runWrapped() {
         switch (runReason) {
           // 首次请求时
          case INITIALIZE:
            stage = getNextStage(Stage.INITIALIZE);
            currentGenerator = getNextGenerator();
            // load数据
            runGenerators();
            break;
          case SWITCH_TO_SOURCE_SERVICE:
            // load数据
            runGenerators();
            break;
          case DECODE_DATA:
            // 数据处理
            decodeFromRetrievedData();
            break;
          default:
            throw new IllegalStateException("Unrecognized run reason: " + runReason);
        }
      }
    

    核心的执行流程如下代码:

    /**
       * 执行Generators
       */
      private void runGenerators() {
        // 获取当前线程
        currentThread = Thread.currentThread();
        startFetchTime = LogTime.getLogTime();
        boolean isStarted = false;
        // currentGenerator.startNext() : 从当前策略对应的Generator获取数据,数据获取成功则回调DecodeJob的onDataFetcherReady对资源进行处理。否则尝试从下一个策略的Generator获取数据
        while (!isCancelled && currentGenerator != null
            && !(isStarted = currentGenerator.startNext())) {
          stage = getNextStage(stage);
          // 根据Stage获取到相应的Generator后会执行currentGenerator.startNext(),如果中途startNext返回true,则直接回调,否则最终会得到SOURCE的stage,重新调度任务
          currentGenerator = getNextGenerator();
    
          if (stage == Stage.SOURCE) {
            // 重新调度当前任务
            reschedule();
            return;
          }
        }
        // We've run out of stages and generators, give up.
        if ((stage == Stage.FINISHED || isCancelled) && !isStarted) {
          notifyFailed();
        }
    
        // Otherwise a generator started a new load and we expect to be called back in
        // onDataFetcherReady.
      }
    

    我们看下DecodeJob的执行流程


    decodeJob执行流程

    总结

    到这里, 整体的流程大致是搞清楚了, 至于说是缓存的原理机制, 在之前Engine.load()的方法内, 删除缓存的方法进去可以看到一个LruCache的类文件, 从名字可以推断是Glide自己实现的Lru算法作为缓存的处理, 关于Lru的算法原理, 在本篇内就不再做赘述了, 而ActiveCache用到了引用计数算法.
    Glide用到了大量的抽象工厂类, 另外方法内经常是包括了十来个参数, 在阅读的经过上还是有点困难(对我而言).
    相应的代码注释可看Github上我补充的注释

    相关文章

      网友评论

        本文标题:Glide源码阅读笔记

        本文链接:https://www.haomeiwen.com/subject/ezyugxtx.html