美文网首页生信技巧注释和富集
RNASeq实战练习-DESeq2差异及clusterProfi

RNASeq实战练习-DESeq2差异及clusterProfi

作者: 小小白的jotter | 来源:发表于2021-08-24 10:31 被阅读0次

    RNA-seq(7) : DEseq2筛选差异表达基因并注释(bioMart)

    一文掌握R包DESeq2的差异基因分析过程

    转录组入门(8):差异基因结果注释

    转录组接下来的分析就用 R 进行

    DESeq2差异分析

    数据准备

    比对得到的 countdata.csv 文件

    image-20210806103139849

    样本信息表,保存为 coldata.csv 文件

    image-20210809233843177

    载入数据及分析

    # 安装 DESeq2 包
    install.packages('BiocManager')  #已安装就不需要再安装
    BiocManager::install('DESeq2')
    
    # 读取数据
    countdata <- read.csv('countdata.csv', row.names = 1, header = T)
    coldata <- read.csv('coldata.csv')
    
    # 载入 DESeq2 包
    library(DESeq2)
    
    # 构建 DESeqDataSet 对象
    dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, design= ~condition)
    
    # 计算差异倍数并获得 p 值
    dds1 <- DESeq(dds, fitType = 'mean', minReplicatesForReplace = 7, parallel = FALSE)
    
    # 将 NSR 在前,WT 在后,意为 NSR 相较于 WT 中哪些基因上调/下调
    res <- results(dds1, contrast = c('condition', 'NSR', 'WT'))
    
    #输出表格至本地
    res1 <- data.frame(res, stringsAsFactors = FALSE, check.names = FALSE)
    write.table(res1, 'DESeq2.txt', col.names = NA, sep = '\t', quote = FALSE)
    
    image-20210820102408384

    筛选差异表达基因

    # 按 padj 值升序排序,相同 padj 值下继续按 log2FC 降序排序
    res1 <- res1[order(res1$padj, res1$log2FoldChange, decreasing = c(FALSE, TRUE)), ]
    
    # 将 up,down,none 的基因筛选并标记出来
    res1[which(res1$log2FoldChange >= 1 & res1$padj < 0.01),'sig'] <- 'up'
    res1[which(res1$log2FoldChange <= -1 & res1$padj < 0.01),'sig'] <- 'down'
    res1[which(abs(res1$log2FoldChange) <= 1 | res1$padj >= 0.01),'sig'] <- 'none'
    
    #输出选择的差异基因总表
    res1_diff <- subset(res1, sig %in% c('up', 'down'))
    write.table(res1_diff, file = 'DESeq2.diff.txt', sep = '\t', col.names = NA, quote = FALSE)
    
    #根据 up 和 down 分开输出
    res1_up <- subset(res1, sig == 'up')
    res1_down <- subset(res1, sig == 'down')
    
    write.table(res1_up, file = 'DESeq2.up.txt', sep = '\t', col.names = NA, quote = FALSE)
    write.table(res1_down, file = 'DESeq2.down.txt', sep = '\t', col.names = NA, quote = FALSE)
    

    clusterProfiler转换ID及富集分析

    GO、KEGG富集分析(一)有参情况

    clusterProfiler基因功能富集分析 +气泡图

    Bioconductor的镜像修改

    转换ID

    # 修改镜像
    chooseBioCmirror()
    
    image-20210820101849879
    BiocManager::install("clusterProfiler")
    library(clusterProfiler)
    BiocManager::install("org.At.tair.db") # 镜像改一下安装很快
    library(org.At.tair.db)
    gene <- row.names(res1_diff)
    columns(org.At.tair.db)
    
    image-20210818235111858
    # 转换 ID,bitr 会把有缺失的行删掉
    tansid <- select(org.At.tair.db,keys = gene,columns = c("GENENAME","SYMBOL","ENTREZID"),keytype = "TAIR")
    tansid1 <- bitr(gene,fromType = "TAIR",toType = c("GENENAME","SYMBOL","ENTREZID"),OrgDb = "org.At.tair.db")
    
    write.table(tansid, file = 'IDS.txt', sep = '\t', col.names = NA, quote = FALSE)
    write.table(tansid1, file = 'ID.bitr.txt', sep = '\t', col.names = NA, quote = FALSE)
    

    GO分析

    # 为了有结果,参数设置的有点高
    go.all <- enrichGO(gene = tansid$ENTREZID,OrgDb = org.At.tair.db,keyType = 'ENTREZID',ont = 'ALL',pAdjustMethod = "BH",pvalueCutoff = 0.3,qvalueCutoff = 0.3)
    #随后对富集结果进行总览,查看BP,CC,MF的个数
    dim(go.all[go.all$ONTOLOGY=='BP',]);dim(go.all[go.all$ONTOLOGY=='CC',]);dim(go.all[go.all$ONTOLOGY=='MF',])
    #保存结果
    write.csv(go.all@result,'DEG_go.all.result.csv',row.names=F)
    
    image-20210823131753615

    KEGG分析

    查找KEGG物种简写:https://www.genome.jp/kegg/catalog/org_list.html
    拟南芥的物种简写是 ath

    # 注意一下基因使用的 ID,我之前一直以为是 ENTREZID,结果一直报错
    enrich.kegg <- enrichKEGG(gene =tansid$TAIR,
                              organism ="ath",
                              keyType = "kegg",
                              pvalueCutoff = 1,
                              pAdjustMethod = "BH",
                              qvalueCutoff = 1,
                              use_internal_data =FALSE)
    dim(enrich.kegg)
    write.csv(enrich.kegg@result,'DEG_KEGG.result.csv',row.names=F)
    
    image-20210823132032952

    相关文章

      网友评论

        本文标题:RNASeq实战练习-DESeq2差异及clusterProfi

        本文链接:https://www.haomeiwen.com/subject/gbqdiltx.html