美文网首页RR统计编程机器学习
R语言统计系列第13篇-K-M生存曲线与logrank检验

R语言统计系列第13篇-K-M生存曲线与logrank检验

作者: 拾光_2020 | 来源:发表于2020-05-09 08:34 被阅读0次

今天是各类统计方法R语言实现的第13期,我们主要介绍R语言统计系列第13篇-K-M生存曲线与logrank检验。 ### 生存分析

生存分析是将事件的结果和出现这一结果经历的事件结合起来分析的一类统计方法,其因变量的特征是既有事件是否发生,也有事件出现的时间长短。K-M生存曲线、logrank检验以及之后会讲到的Cox回归分析均属于生存分析。

数据整理

Kaplan-Meier法又称为积乘极限法,常用于估计生存率及其标准误,计算可信区间。

此处使用的是TCGA肝癌的数据,数据经下载整理,此处仍需再次整理。

# 载入数据
lihc<-read.table("tcga_lihc.tsv",header = T,row.names = 1,quote = "",sep = '\t')
summary(lihc)
##              samples             sample_type.samples
##  TCGA-2V-A95S-01A:  1   Primary Tumor      :377     
##  TCGA-2Y-A9GS-01A:  1   Recurrent Tumor    :  3     
##  TCGA-2Y-A9GT-01A:  1   Solid Tissue Normal: 89     
##  TCGA-2Y-A9GU-01A:  1                               
##  TCGA-2Y-A9GV-01A:  1                               
##  TCGA-2Y-A9GW-01A:  1                               
##  (Other)         :463                               
##  age_at_initial_pathologic_diagnosis  tumor_stage.diagnoses
##  Min.   :16.00                       stage i     :212      
##  1st Qu.:52.00                       stage ii    :107      
##  Median :62.00                       stage iiia  : 80      
##  Mean   :60.26                       not reported: 34      
##  3rd Qu.:70.00                       stage iiib  : 12      
##  Max.   :90.00                       stage iiic  : 11      
##  NA's   :1                           (Other)     : 13      
##  neoplasm_histologic_grade       OS           OS.time      
##    :  8                    Min.   :0.000   Min.   :   1.0  
##  G1: 68                    1st Qu.:0.000   1st Qu.: 358.0  
##  G2:227                    Median :0.000   Median : 636.0  
##  G3:153                    Mean   :0.406   Mean   : 876.7  
##  G4: 13                    3rd Qu.:1.000   3rd Qu.:1214.5  
##                            Max.   :1.000   Max.   :3675.0  
##                            NA's   :6       NA's   :6       
##  adjacent_hepatic_tissue_inflammation_extent_type     PIK3CA      
##        :161                                       Min.   :0.2124  
##  Mild  :124                                       1st Qu.:0.9635  
##  None  :162                                       Median :1.2005  
##  Severe: 22                                       Mean   :1.2202  
##                                                   3rd Qu.:1.4643  
##                                                   Max.   :2.6090  
##                                                   NA's   :45      
##       AKT1            PTEN             MYC              TP53       
##  Min.   :1.461   Min.   :0.5392   Min.   :0.3709   Min.   :0.7284  
##  1st Qu.:2.708   1st Qu.:2.4475   1st Qu.:2.7515   1st Qu.:2.3810  
##  Median :2.963   Median :2.7105   Median :3.9235   Median :2.9070  
##  Mean   :2.976   Mean   :2.7179   Mean   :3.6971   Mean   :2.8948  
##  3rd Qu.:3.321   3rd Qu.:3.0350   3rd Qu.:4.7097   3rd Qu.:3.4730  
##  Max.   :4.786   Max.   :4.1610   Max.   :7.0430   Max.   :5.2620  
##  NA's   :45      NA's   :45       NA's   :45       NA's   :45

可以看到该数据包含样本名称,属于原发、复发还是癌旁,诊断年龄,分期,分级,OS状态,OS时间,癌旁炎症情况,还有几个癌基因/抑癌基因的log2(FPKM+1)

此处简单将有缺失值的样本删去,将癌旁和复发样本删去,将stage分为1、2、3、4,grade转化为1,2,3,4,癌旁炎症情况转换为1,2,3。当然也可考虑使用一些缺失值填充的方法,可以保留更多的样本。

lihc<-lihc[lihc$sample_type.samples=="Primary Tumor",]
lihc<-na.omit(lihc)
lihc<-lihc[,-c(1,2)]
lihc<-lihc[! lihc$tumor_stage.diagnoses =="not reported" &  !  lihc$neoplasm_histologic_grade == "" & 
             !  lihc$adjacent_hepatic_tissue_inflammation_extent_type == ""& !lihc$tumor_stage.diagnoses == "(Other)" ,]
summary(lihc)
##  age_at_initial_pathologic_diagnosis tumor_stage.diagnoses
##  Min.   :16.00                       stage i   :115       
##  1st Qu.:51.00                       stage ii  : 58       
##  Median :61.00                       stage iiia: 34       
##  Mean   :59.29                       stage iiib:  5       
##  3rd Qu.:69.00                       stage iiic:  4       
##  Max.   :84.00                       stage iii :  2       
##                                      (Other)   :  3       
##  neoplasm_histologic_grade       OS            OS.time      
##    :  0                    Min.   :0.0000   Min.   :   1.0  
##  G1: 24                    1st Qu.:0.0000   1st Qu.: 409.0  
##  G2:115                    Median :0.0000   Median : 662.0  
##  G3: 77                    Mean   :0.2805   Mean   : 960.1  
##  G4:  5                    3rd Qu.:1.0000   3rd Qu.:1386.0  
##                            Max.   :1.0000   Max.   :3675.0  
##                                                             
##  adjacent_hepatic_tissue_inflammation_extent_type     PIK3CA      
##        :  0                                       Min.   :0.3078  
##  Mild  : 93                                       1st Qu.:0.9649  
##  None  :112                                       Median :1.2170  
##  Severe: 16                                       Mean   :1.2237  
##                                                   3rd Qu.:1.5000  
##                                                   Max.   :2.3290  
##                                                                   
##       AKT1            PTEN            MYC              TP53       
##  Min.   :1.505   Min.   :1.095   Min.   :0.5372   Min.   :0.7284  
##  1st Qu.:2.663   1st Qu.:2.439   1st Qu.:2.6570   1st Qu.:2.4230  
##  Median :2.970   Median :2.704   Median :3.7650   Median :2.9220  
##  Mean   :2.946   Mean   :2.724   Mean   :3.5609   Mean   :2.8823  
##  3rd Qu.:3.326   3rd Qu.:3.041   3rd Qu.:4.4950   3rd Qu.:3.5330  
##  Max.   :4.786   Max.   :4.161   Max.   :7.0430   Max.   :5.2620  
## 
##此处四期太少,归入三期
lihc$tumor_stage.diagnoses<- ifelse(lihc$tumor_stage.diagnoses == "stage i",1,
       ifelse(lihc$tumor_stage.diagnoses == "stage ii"|lihc$tumor_stage.diagnoses == "stage iia"|lihc$tumor_stage.diagnoses == "stage iib"|
                lihc$tumor_stage.diagnoses == "stage iic",2,3))

##G4太少,归入G3
lihc$neoplasm_histologic_grade<- ifelse(lihc$neoplasm_histologic_grade == "G1",1,
       ifelse(lihc$neoplasm_histologic_grade == "G2",2,3))

lihc$adjacent_hepatic_tissue_inflammation_extent_type<-ifelse(lihc$adjacent_hepatic_tissue_inflammation_extent_type == "None",1,
       ifelse(lihc$adjacent_hepatic_tissue_inflammation_extent_type == "Mild",2,3))
summary(lihc)
##  age_at_initial_pathologic_diagnosis tumor_stage.diagnoses
##  Min.   :16.00                       Min.   :1.000        
##  1st Qu.:51.00                       1st Qu.:1.000        
##  Median :61.00                       Median :1.000        
##  Mean   :59.29                       Mean   :1.697        
##  3rd Qu.:69.00                       3rd Qu.:2.000        
##  Max.   :84.00                       Max.   :3.000        
##  neoplasm_histologic_grade       OS            OS.time      
##  Min.   :1.000             Min.   :0.0000   Min.   :   1.0  
##  1st Qu.:2.000             1st Qu.:0.0000   1st Qu.: 409.0  
##  Median :2.000             Median :0.0000   Median : 662.0  
##  Mean   :2.262             Mean   :0.2805   Mean   : 960.1  
##  3rd Qu.:3.000             3rd Qu.:1.0000   3rd Qu.:1386.0  
##  Max.   :3.000             Max.   :1.0000   Max.   :3675.0  
##  adjacent_hepatic_tissue_inflammation_extent_type     PIK3CA      
##  Min.   :1.000                                    Min.   :0.3078  
##  1st Qu.:1.000                                    1st Qu.:0.9649  
##  Median :1.000                                    Median :1.2170  
##  Mean   :1.566                                    Mean   :1.2237  
##  3rd Qu.:2.000                                    3rd Qu.:1.5000  
##  Max.   :3.000                                    Max.   :2.3290  
##       AKT1            PTEN            MYC              TP53       
##  Min.   :1.505   Min.   :1.095   Min.   :0.5372   Min.   :0.7284  
##  1st Qu.:2.663   1st Qu.:2.439   1st Qu.:2.6570   1st Qu.:2.4230  
##  Median :2.970   Median :2.704   Median :3.7650   Median :2.9220  
##  Mean   :2.946   Mean   :2.724   Mean   :3.5609   Mean   :2.8823  
##  3rd Qu.:3.326   3rd Qu.:3.041   3rd Qu.:4.4950   3rd Qu.:3.5330  
##  Max.   :4.786   Max.   :4.161   Max.   :7.0430   Max.   :5.2620
str(lihc)
## 'data.frame':    221 obs. of  11 variables:
##  $ age_at_initial_pathologic_diagnosis             : int  84 82 81 81 80 80 80 79 79 78 ...
##  $ tumor_stage.diagnoses                           : num  1 2 1 1 3 1 1 2 2 1 ...
##  $ neoplasm_histologic_grade                       : num  2 2 3 2 2 2 2 1 2 2 ...
##  $ OS                                              : int  0 1 1 0 1 1 0 0 0 1 ...
##  $ OS.time                                         : int  10 848 410 1168 1210 688 673 1241 387 1694 ...
##  $ adjacent_hepatic_tissue_inflammation_extent_type: num  1 1 1 1 1 2 3 1 1 1 ...
##  $ PIK3CA                                          : num  1.03 1.61 1.94 1.04 1.22 ...
##  $ AKT1                                            : num  4.79 3.88 3.02 2.7 3.59 ...
##  $ PTEN                                            : num  2.44 2.66 3.08 3.02 2.67 ...
##  $ MYC                                             : num  3.38 1.32 5.41 3.85 3.69 ...
##  $ TP53                                            : num  0.882 2.604 5.262 3.719 2.878 ...

整理完毕。

首先查看分期

##此处直接绘图展示K-M生存曲线与logrank检验分析结果
library("survival")
## Warning: package 'survival' was built under R version 3.6.3
library("survminer")
## Warning: package 'survminer' was built under R version 3.6.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.6.3
## Loading required package: ggpubr
## Loading required package: magrittr
fit <- survfit(Surv(OS.time, OS) ~ tumor_stage.diagnoses, data = lihc)
print(fit)
## Call: survfit(formula = Surv(OS.time, OS) ~ tumor_stage.diagnoses, 
##     data = lihc)
## 
##                           n events median 0.95LCL 0.95UCL
## tumor_stage.diagnoses=1 115     23     NA    2456      NA
## tumor_stage.diagnoses=2  58     16   3258    1386      NA
## tumor_stage.diagnoses=3  48     23   1210     770      NA
res.sum <- surv_summary(fit)
## Warning in .get_data(x, data = data): The `data` argument is not provided. Data
## will be extracted from model fit.
head(res.sum)
##   time n.risk n.event n.censor      surv     std.err upper     lower
## 1    9    115       0        1 1.0000000 0.000000000     1 1.0000000
## 2   10    114       0        1 1.0000000 0.000000000     1 1.0000000
## 3   14    113       1        0 0.9911504 0.008888977     1 0.9740321
## 4   16    112       1        0 0.9823009 0.012627410     1 0.9582880
## 5   34    111       1        0 0.9734513 0.015535494     1 0.9442574
## 6   44    110       0        1 0.9734513 0.015535494     1 0.9442574
##                    strata tumor_stage.diagnoses
## 1 tumor_stage.diagnoses=1                     1
## 2 tumor_stage.diagnoses=1                     1
## 3 tumor_stage.diagnoses=1                     1
## 4 tumor_stage.diagnoses=1                     1
## 5 tumor_stage.diagnoses=1                     1
## 6 tumor_stage.diagnoses=1                     1
surv_diff <- survdiff(Surv(OS.time, OS) ~ tumor_stage.diagnoses, data = lihc)
surv_diff
## Call:
## survdiff(formula = Surv(OS.time, OS) ~ tumor_stage.diagnoses, 
##     data = lihc)
## 
##                           N Observed Expected (O-E)^2/E (O-E)^2/V
## tumor_stage.diagnoses=1 115       23     34.2    3.6438     8.194
## tumor_stage.diagnoses=2  58       16     14.9    0.0783     0.104
## tumor_stage.diagnoses=3  48       23     12.9    7.8537     9.980
## 
##  Chisq= 11.7  on 2 degrees of freedom, p= 0.003

此处可以看出三组之间生存时间不全相等,具体那两组不等,需要进行多重比较。

##此处展示两两之间多重比较结果

surv_pair_diff <- pairwise_survdiff(Surv(OS.time, OS) ~ tumor_stage.diagnoses, data = lihc, p.adjust.method = "BH")
surv_pair_diff
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  lihc and tumor_stage.diagnoses 
## 
##   1      2     
## 2 0.1389 -     
## 3 0.0018 0.1389
## 
## P value adjustment method: BH

可以看出仅有1和3之间生存有统计学差异

##绘图
ggsurvplot(fit,
       pval = TRUE, conf.int = TRUE,
       risk.table = TRUE, # Add risk table
       risk.table.col = "strata", # Change risk table color by groups
       linetype = "strata", # Change line type by groups
       ggtheme = theme_bw(), # Change ggplot2 theme
       palette = c("#E7B800", "#2E9FDF","#00AFBB")
       )
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.
image.png
ggsurvplot(fit,
       pval = TRUE,conf.int = TRUE,
      risk.table.col = "strata", # Change risk table color by groups
      ggtheme = theme_bw(), # Change ggplot2 theme
      palette = c("#E7B800", "#2E9FDF","#00AFBB"),
      fun = "event")
image.png

再看分级

##此处直接绘图展示K-M生存曲线与logrank检验分析结果
library("survival")
library("survminer")

fit <- survfit(Surv(OS.time, OS) ~ neoplasm_histologic_grade, data = lihc)
print(fit)
## Call: survfit(formula = Surv(OS.time, OS) ~ neoplasm_histologic_grade, 
##     data = lihc)
## 
##                               n events median 0.95LCL 0.95UCL
## neoplasm_histologic_grade=1  24      3     NA    2131      NA
## neoplasm_histologic_grade=2 115     31   2456    1685      NA
## neoplasm_histologic_grade=3  82     28     NA    1372      NA
res.sum <- surv_summary(fit)
## Warning in .get_data(x, data = data): The `data` argument is not provided. Data
## will be extracted from model fit.
head(res.sum)
##   time n.risk n.event n.censor surv std.err upper lower
## 1   20     24       0        1    1       0     1     1
## 2   44     23       0        1    1       0     1     1
## 3  314     22       0        1    1       0     1     1
## 4  361     21       0        1    1       0     1     1
## 5  387     20       0        1    1       0     1     1
## 6  608     19       0        1    1       0     1     1
##                        strata neoplasm_histologic_grade
## 1 neoplasm_histologic_grade=1                         1
## 2 neoplasm_histologic_grade=1                         1
## 3 neoplasm_histologic_grade=1                         1
## 4 neoplasm_histologic_grade=1                         1
## 5 neoplasm_histologic_grade=1                         1
## 6 neoplasm_histologic_grade=1                         1
surv_diff <- survdiff(Surv(OS.time, OS) ~ neoplasm_histologic_grade, data = lihc)
surv_diff
## Call:
## survdiff(formula = Surv(OS.time, OS) ~ neoplasm_histologic_grade, 
##     data = lihc)
## 
##                               N Observed Expected (O-E)^2/E (O-E)^2/V
## neoplasm_histologic_grade=1  24        3     8.54    3.5974    4.2020
## neoplasm_histologic_grade=2 115       31    32.11    0.0382    0.0794
## neoplasm_histologic_grade=3  82       28    21.35    2.0724    3.1834
## 
##  Chisq= 5.8  on 2 degrees of freedom, p= 0.06

此处可以看出三组之间生存时比较没有统计学差异。

##此处展示两两之间多重比较结果

surv_pair_diff <- pairwise_survdiff(Surv(OS.time, OS) ~ neoplasm_histologic_grade, data = lihc, p.adjust.method = "BH")
surv_pair_diff
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  lihc and neoplasm_histologic_grade 
## 
##   1     2    
## 2 0.092 -    
## 3 0.084 0.242
## 
## P value adjustment method: BH

依旧没有统计学差异

##绘图
ggsurvplot(fit,
       pval = TRUE, conf.int = TRUE,
       risk.table = TRUE, # Add risk table
       risk.table.col = "strata", # Change risk table color by groups
       linetype = "strata", # Change line type by groups
       ggtheme = theme_bw(), # Change ggplot2 theme
       palette = c("#E7B800", "#2E9FDF","#00AFBB")
       )
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.
image.png
ggsurvplot(fit,
       pval = TRUE,conf.int = TRUE,
      risk.table.col = "strata", # Change risk table color by groups
      ggtheme = theme_bw(), # Change ggplot2 theme
      palette = c("#E7B800", "#2E9FDF","#00AFBB"),
      fun = "event")
image.png

最后看一下癌旁炎症情况

##此处直接绘图展示K-M生存曲线与logrank检验分析结果
library("survival")
library("survminer")

fit <- survfit(Surv(OS.time, OS) ~ adjacent_hepatic_tissue_inflammation_extent_type, data = lihc)
print(fit)
## Call: survfit(formula = Surv(OS.time, OS) ~ adjacent_hepatic_tissue_inflammation_extent_type, 
##     data = lihc)
## 
##                                                      n events median 0.95LCL
## adjacent_hepatic_tissue_inflammation_extent_type=1 112     33   2542    1791
## adjacent_hepatic_tissue_inflammation_extent_type=2  93     25     NA    1386
## adjacent_hepatic_tissue_inflammation_extent_type=3  16      4     NA      NA
##                                                    0.95UCL
## adjacent_hepatic_tissue_inflammation_extent_type=1      NA
## adjacent_hepatic_tissue_inflammation_extent_type=2      NA
## adjacent_hepatic_tissue_inflammation_extent_type=3      NA
res.sum <- surv_summary(fit)
## Warning in .get_data(x, data = data): The `data` argument is not provided. Data
## will be extracted from model fit.
head(res.sum)
##   time n.risk n.event n.censor      surv     std.err upper     lower
## 1    6    112       0        1 1.0000000 0.000000000     1 1.0000000
## 2    9    111       0        1 1.0000000 0.000000000     1 1.0000000
## 3   10    110       0        1 1.0000000 0.000000000     1 1.0000000
## 4   11    109       1        0 0.9908257 0.009216688     1 0.9730877
## 5   20    108       0        1 0.9908257 0.009216688     1 0.9730877
## 6   34    107       1        0 0.9815656 0.013157325     1 0.9565767
##                                               strata
## 1 adjacent_hepatic_tissue_inflammation_extent_type=1
## 2 adjacent_hepatic_tissue_inflammation_extent_type=1
## 3 adjacent_hepatic_tissue_inflammation_extent_type=1
## 4 adjacent_hepatic_tissue_inflammation_extent_type=1
## 5 adjacent_hepatic_tissue_inflammation_extent_type=1
## 6 adjacent_hepatic_tissue_inflammation_extent_type=1
##   adjacent_hepatic_tissue_inflammation_extent_type
## 1                                                1
## 2                                                1
## 3                                                1
## 4                                                1
## 5                                                1
## 6                                                1
surv_diff <- survdiff(Surv(OS.time, OS) ~ adjacent_hepatic_tissue_inflammation_extent_type, data = lihc)
surv_diff
## Call:
## survdiff(formula = Surv(OS.time, OS) ~ adjacent_hepatic_tissue_inflammation_extent_type, 
##     data = lihc)
## 
##                                                      N Observed Expected
## adjacent_hepatic_tissue_inflammation_extent_type=1 112       33    35.84
## adjacent_hepatic_tissue_inflammation_extent_type=2  93       25    21.81
## adjacent_hepatic_tissue_inflammation_extent_type=3  16        4     4.35
##                                                    (O-E)^2/E (O-E)^2/V
## adjacent_hepatic_tissue_inflammation_extent_type=1    0.2255    0.5561
## adjacent_hepatic_tissue_inflammation_extent_type=2    0.4661    0.7521
## adjacent_hepatic_tissue_inflammation_extent_type=3    0.0275    0.0298
## 
##  Chisq= 0.8  on 2 degrees of freedom, p= 0.7

此处可以看出三组之间生存时比较没有统计学差异。

##此处展示两两之间多重比较结果

surv_pair_diff <- pairwise_survdiff(Surv(OS.time, OS) ~ adjacent_hepatic_tissue_inflammation_extent_type, data = lihc, p.adjust.method = "BH")
surv_pair_diff
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  lihc and adjacent_hepatic_tissue_inflammation_extent_type 
## 
##   1    2   
## 2 0.97 -   
## 3 0.97 0.97
## 
## P value adjustment method: BH

依旧没有统计学差异

##绘图
ggsurvplot(fit,
       pval = TRUE, conf.int = TRUE,
       risk.table = TRUE, # Add risk table
       risk.table.col = "strata", # Change risk table color by groups
       linetype = "strata", # Change line type by groups
       ggtheme = theme_bw(), # Change ggplot2 theme
       palette = c("#E7B800", "#2E9FDF","#00AFBB")
       )
## Warning: Vectorized input to `element_text()` is not officially supported.
## Results may be unexpected or may change in future versions of ggplot2.
image.png
ggsurvplot(fit,
       pval = TRUE,conf.int = TRUE,
      risk.table.col = "strata", # Change risk table color by groups
      ggtheme = theme_bw(), # Change ggplot2 theme
      palette = c("#E7B800", "#2E9FDF","#00AFBB"),
      fun = "event")
image.png

好了,今天的R语言实现统计方法系列推文暂时告一段落,我们下次再见吧! 小伙伴们如果有什么统计上的问题,或者如果想要学习什么方面的生物信息内容,可以在微信群或者知识星球提问,没准哪天的推文就是专门解答你的问题哦!

相关文章

网友评论

    本文标题:R语言统计系列第13篇-K-M生存曲线与logrank检验

    本文链接:https://www.haomeiwen.com/subject/hdlgghtx.html