校正批次效应

作者: 因地制宜的生信达人 | 来源:发表于2018-07-01 20:44 被阅读630次

提出情况下我们最好是在实验设计上就考虑到这一点。

但很多时候,数据分析者往往身不由己。

Stanford 大学 在MOOC上面的公开课:PH525x series - Biomedical Data Science 还专门抽一个章节来讲解这个问题,足以见它的重要性。 http://genomicsclass.github.io/book/

Chapter 10 - Batch Effects

最简单的是quantile

library("preprocessCore")
dataMat <- cbind(trainExprMat, testExprMat)
dataMatNorm <- normalize.quantiles(dataMat)
whichbatch <- as.factor(c(rep("train", ncol(trainExprMat)), rep("test", ncol(testExprMat))))
train=dataMatNorm[, whichbatch=="train"]
test=dataMatNorm[, whichbatch=="test"]

很明显,画一下校正前后的 boxplot 就可以看到效果,然后PCA一下,看看是不是两个矩阵很清晰的被分开,如果是,说明校正失败咯。

高级一点是SVA包的ComBat函数

library("sva")
# subset to common genes andbatch correct using ComBat
dataMat <- cbind(trainExprMat, testExprMat)
mod <- data.frame("(Intercept)"=rep(1, ncol(dataMat)))
rownames(mod) <- colnames(dataMat)
whichbatch <- as.factor(c(rep("train", ncol(trainExprMat)), rep("test", ncol(testExprMat))))
combatout <- ComBat(dataMat, whichbatch, mod=mod)
train=combatout[, whichbatch=="train"]
test=combatout[, whichbatch=="test"]

还有limma包也附带了这个功能,就不多介绍了,感兴趣的朋友可以自行在生信技能树论坛搜索看看。

相关文章

网友评论

    本文标题:校正批次效应

    本文链接:https://www.haomeiwen.com/subject/hhyhuftx.html