美文网首页
Arima实战:利用Python中pyramid-arima库进

Arima实战:利用Python中pyramid-arima库进

作者: 途中的蜗牛 | 来源:发表于2020-04-16 09:51 被阅读0次

    Arima 模型的重要假设

    ARMA, ARIMA, SARIMA assumptions:
    ▪ Time-series data is stationary.
    ▪ If nonstationary, remove trend, seasonality, apply differencing, and so on.
    ▪ Remember that stationary data has no trend, seasonality, constant mean, and
    constant variance.
    ▪ Therefore, the past is assumed to represent what will happen in the future
    in a probabilistic sense.

    1. 安装

    pyramid-arima 的安装请见 https://pypi.org/project/pyramid-arima/
    (我只在linux系统上成功安装了,windows上没有成功)

    $ pip install pyramid-arima
    
    

    函数参数介绍请见 https://www.alkaline-ml.com/pmdarima/index.html

    Github上的例子请见 https://github.com/tgsmith61591/pmdarima

    2. 代码实例

    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    import pmdarima as pm
    import warnings
    warnings.filterwarnings("ignore")
    
    

    2.1 加载数据集

    df = pd.read_csv('dataset.csv')
    
    
    split_point = 1000
    data_train = df['x'].iloc[:split_point].values
    data_test = df['x'].iloc[split_point:].values
    
    

    2.2 训练模型

    pm.auto_arima可以自动搜索出arima模型中的(q, d, p)参数

    • p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项

    • d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项

    • q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

    参考 https://blog.csdn.net/HHXUN/article/details/79858672

    model = pm.auto_arima(data_train)
    
    

    2.3 模型预测

    利用 model.predict() 函数预测

    x_pred = model.predict(n_periods=1)
    
    

    或更优的,使用 model.update() 函数,不断用新观测到的 value 更新模型,以达到更长时间的预测。

    pred_list = []
    for x_i in data_test:
        pred_list += [model.predict(n_periods=1)]
        # 更新模型
        model.update(x_i)    
    
    

    2.4 模型评价

    from sklearn import metrics
    def eval_metrics(y_true, y_pred):
        metrics_dict = dict()
        metrics_dict['MAE'] = metrics.mean_absolute_error(y_true, y_pred)
        metrics_dict['MSE'] = metrics.mean_squared_error(y_true, y_pred)
        metrics_dict['MAPE'] = np.mean(np.true_divide(np.abs(y_true-y_pred), y_true))
        return metrics_dict
    
    
    eval_dict = eval_metrics(data_test,  np.array(pred_list))
    print(eval_dict)
    

    作者:菜鸟程序猿zq
    链接:https://www.jianshu.com/p/54826718be4f
    来源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

    相关文章

      网友评论

          本文标题:Arima实战:利用Python中pyramid-arima库进

          本文链接:https://www.haomeiwen.com/subject/hlvlvhtx.html