美文网首页
Importing data from statistical

Importing data from statistical

作者: 腾子_Lony | 来源:发表于2017-09-01 23:02 被阅读0次

    haven is an extremely easy-to-use package to import data from three software packages: SAS, STATA and SPSS. Depending on the software, you use different functions:

    SAS: read_sas()

    STATA: read_dta() (or read_stata(), which are identical)

    SPSS: read_sav() or read_por(), depending on the file type.

    All these functions take one key argument: the path to your local file. In fact, you can even pass a URL;havenwill then automatically download the file for you before importing it.

    # Load the haven package

    library(haven)

    # Import sales.sas7bdat: sales

    sales<-read_sas("sales.sas7bdat")

    # Display the structure of sales

    str(sales)

    When inspecting the result of the read_dta() call, you will notice that one column will be imported as a labelled vector, an R equivalent for the common data structure in other statistical environments. In order to effectively continue working on the data in R, it's best to change this data into a standard R class. To convert a variable of the classlabelledto a factor, you'll need haven's as_factor() function.

    # Import the data from the URL: sugar

    sugar<-read_dta("http://assets.datacamp.com/production/course_1478/datasets/trade.dta")

    # Structure of sugar

    str(sugar)

    # Convert values in Date column to dates

    sugar$Date<-as.Date(as_factor(sugar$Date))

    # Structure of sugar again

    str(sugar)

    # Import person.sav: traits

    traits<-read_sav("person.sav")

    # Summarize traits

    summary(traits)

    # Print out a subset

    subset(traits,Extroversion>40&Agreeableness>40)

    # Import SPSS data from the URL: work

    work<-read_sav("http://s3.amazonaws.com/assets.datacamp.com/production/course_1478/datasets/employee.sav")

    # Display summary of work$GENDER

    summary(work$GENDER)

    # Convert work$GENDER to a factor

    work$GENDER<-as_factor(work$GENDER)

    # Display summary of work$GENDER again

    summary(work$GENDER)

    Foreign

    Data can be very diverse, going from character vectors to categorical variables, dates and more. It's in these cases that the additional arguments of read.dta()    will come in handy.

    The arguments you will use most often are convert.dates , convert.factors ,missing.type and convert.underscore . Their meaning is pretty straightforward, as Filip explained in the video. It's all about correctly converting STATA data to standard R data structures. Type?read.dtato find out about about the default values.

    # Load the foreign package

    library(foreign)

    # Import florida.dta and name the resulting data frame florida

    florida<-read.dta("florida.dta")

    # Check tail() of florida

    tail(florida,n=6)

    # Specify the file path using file.path(): path

    path<-file.path("worldbank","edequality.dta")

    # Create and print structure of edu_equal_1

    edu_equal_1<-read.dta(path)

    str(edu_equal_1)

    # Create and print structure of edu_equal_2

    edu_equal_2<-read.dta(path,convert.factors=F)

    str(edu_equal_2)

    # Create and print structure of edu_equal_3

    edu_equal_3<-read.dta(path,convert.underscore=T)

    str(edu_equal_3)

    # Import international.sav as a data frame: demo

    demo<-read.spss("international.sav",to.data.frame=T)

    # Create boxplot of gdp variable of demo

    boxplot(x=demo$gdp)

    # Import international.sav as demo_1

    demo_1<-read.spss("international.sav",to.data.frame=T)

    # Print out the head of demo_1

    head(demo_1)

    # Import international.sav as demo_2

    demo_2<-read.spss("international.sav",to.data.frame=T,use.value.labels=F)

    # Print out the head of demo_2

    head(demo_2)

    相关文章

      网友评论

          本文标题:Importing data from statistical

          本文链接:https://www.haomeiwen.com/subject/hnchjxtx.html