多元线性回归(Multiple Linear Regression)
第1步:数据预处理
导入库
import pandas as pd
import numpy as np
导入数据集
dataset = pd.read_csv('../datasets/50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 4 ].values
print(dataset.head())
print(X[:10])
print(Y)
R&D Spend Administration Marketing Spend State Profit
0 165349.20 136897.80 471784.10 New York 192261.83
1 162597.70 151377.59 443898.53 California 191792.06
2 153441.51 101145.55 407934.54 Florida 191050.39
3 144372.41 118671.85 383199.62 New York 182901.99
4 142107.34 91391.77 366168.42 Florida 166187.94
[[165349.2 136897.8 471784.1 'New York']
[162597.7 151377.59 443898.53 'California']
[153441.51 101145.55 407934.54 'Florida']
[144372.41 118671.85 383199.62 'New York']
[142107.34 91391.77 366168.42 'Florida']
[131876.9 99814.71 362861.36 'New York']
[134615.46 147198.87 127716.82 'California']
[130298.13 145530.06 323876.68 'Florida']
[120542.52 148718.95 311613.29 'New York']
[123334.88 108679.17 304981.62 'California']]
[192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51
155752.6 152211.77 149759.96 146121.95 144259.4 141585.52 134307.35
132602.65 129917.04 126992.93 125370.37 124266.9 122776.86 118474.03
111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31
103282.38 101004.64 99937.59 97483.56 97427.84 96778.92 96712.8
96479.51 90708.19 89949.14 81229.06 81005.76 78239.91 77798.83
71498.49 69758.98 65200.33 64926.08 49490.75 42559.73 35673.41
14681.4 ]
将类别数据数字化
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
#州 进行 label化
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
print("labelencoder:")
print(X[:10])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
print("onehot:")
print(X[:10])
labelencoder:
[[165349.2 136897.8 471784.1 2]
[162597.7 151377.59 443898.53 0]
[153441.51 101145.55 407934.54 1]
[144372.41 118671.85 383199.62 2]
[142107.34 91391.77 366168.42 1]
[131876.9 99814.71 362861.36 2]
[134615.46 147198.87 127716.82 0]
[130298.13 145530.06 323876.68 1]
[120542.52 148718.95 311613.29 2]
[123334.88 108679.17 304981.62 0]]
onehot:
[[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.6534920e+05 1.3689780e+05
4.7178410e+05]
[1.0000000e+00 0.0000000e+00 0.0000000e+00 1.6259770e+05 1.5137759e+05
4.4389853e+05]
[0.0000000e+00 1.0000000e+00 0.0000000e+00 1.5344151e+05 1.0114555e+05
4.0793454e+05]
[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.4437241e+05 1.1867185e+05
3.8319962e+05]
[0.0000000e+00 1.0000000e+00 0.0000000e+00 1.4210734e+05 9.1391770e+04
3.6616842e+05]
[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.3187690e+05 9.9814710e+04
3.6286136e+05]
[1.0000000e+00 0.0000000e+00 0.0000000e+00 1.3461546e+05 1.4719887e+05
1.2771682e+05]
[0.0000000e+00 1.0000000e+00 0.0000000e+00 1.3029813e+05 1.4553006e+05
3.2387668e+05]
[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.2054252e+05 1.4871895e+05
3.1161329e+05]
[1.0000000e+00 0.0000000e+00 0.0000000e+00 1.2333488e+05 1.0867917e+05
3.0498162e+05]]
躲避虚拟变量陷阱
在回归预测中我们需要所有的数据都是numeric的,但是会有一些非numeric的数据,比如国家,省,部门,性别。这时候我们需要设置虚拟变量(Dummy variable)。做法是将此变量中的每一个值,衍生成为新的变量,是设为1,否设为0.举个例子,“性别”这个变量,我们可以虚拟出“男”和”女”两虚拟变量,男性的话“男”值为1,”女”值为,;女性的话“男”值为0,”女”值为1。
但是要注意,这时候虚拟变量陷阱就出现了。就拿性别来说,其实一个虚拟变量就够了,比如 1 的时候是“男”, 0 的时候是”非男”,即为女。如果设置两个虚拟变量“男”和“女”,语义上来说没有问题,可以理解,但是在回归预测中会多出一个变量,多出的这个变量将会对回归预测结果产生影响。一般来说,如果虚拟变量要比实际变量的种类少一个。
在多重线性回归中,变量不是越多越好,而是选择适合的变量。这样才会对结果准确预测。如果category类的特征都放进去,拟合的时候,所有权重的计算,都可以有两种方法实现,一种是提高某个category的w,一种是降低其他category的w,这两种效果是等效的,也就是发生了共线性,虚拟变量系数相加和为1,出现完全共线陷阱。
但是下面测试尽然和想法不一致。。。
X1 = X[: , 1:]
拆分数据集为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
X1_train, X1_test, Y1_train, Y1_test = train_test_split(X1, Y, test_size = 0.2, random_state = 0)
print(X_test)
print("x",X_train)
print("y",Y_train)
print(Y_test)
print(X1_test)
print(Y1_test)
第2步:在训练集上训练多元线性回归模型
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
regressor1 = LinearRegression()
regressor1.fit(X1_train, Y1_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
第3步:在测试集上预测结果
y_pred = regressor.predict(X_test)
y1_pred = regressor1.predict(X1_test)
y_pred0 = regressor.predict(X_train)
print(y_pred)
print(y1_pred)
[103015.20159797 132582.27760815 132447.73845174 71976.09851258
178537.48221055 116161.24230166 67851.69209676 98791.73374688
113969.43533013 167921.0656955 ]
[103015.20159796 132582.27760816 132447.73845175 71976.09851259
178537.48221054 116161.24230163 67851.69209676 98791.73374688
113969.43533012 167921.0656955 ]
from matplotlib import pyplot
pyplot.plot(Y_train)
pyplot.plot(y_pred0)
pyplot.show()
pyplot.plot(Y_train)
pyplot.plot(regressor1.predict(X1_train))
pyplot.show()
# regression evaluation
from sklearn.metrics import r2_score
print(r2_score(Y_test,y_pred))
print(r2_score(Y1_test,y1_pred))
0.9347068473282218
0.9347068473282965
```
从r2得分来看,好了一丢丢~~
网友评论