2019-02-24

作者: 快去上自习吧 | 来源:发表于2019-02-24 19:30 被阅读1次

    多元线性回归(Multiple Linear Regression)

    第1步:数据预处理

    导入库

    import pandas as pd
    import numpy as np
    

    导入数据集

    dataset = pd.read_csv('../datasets/50_Startups.csv')
    X = dataset.iloc[ : , :-1].values
    Y = dataset.iloc[ : ,  4 ].values
    print(dataset.head())
    print(X[:10])
    print(Y)
       R&D Spend  Administration  Marketing Spend       State     Profit
    0  165349.20       136897.80        471784.10    New York  192261.83
    1  162597.70       151377.59        443898.53  California  191792.06
    2  153441.51       101145.55        407934.54     Florida  191050.39
    3  144372.41       118671.85        383199.62    New York  182901.99
    4  142107.34        91391.77        366168.42     Florida  166187.94
    [[165349.2 136897.8 471784.1 'New York']
     [162597.7 151377.59 443898.53 'California']
     [153441.51 101145.55 407934.54 'Florida']
     [144372.41 118671.85 383199.62 'New York']
     [142107.34 91391.77 366168.42 'Florida']
     [131876.9 99814.71 362861.36 'New York']
     [134615.46 147198.87 127716.82 'California']
     [130298.13 145530.06 323876.68 'Florida']
     [120542.52 148718.95 311613.29 'New York']
     [123334.88 108679.17 304981.62 'California']]
    [192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51
     155752.6  152211.77 149759.96 146121.95 144259.4  141585.52 134307.35
     132602.65 129917.04 126992.93 125370.37 124266.9  122776.86 118474.03
     111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31
     103282.38 101004.64  99937.59  97483.56  97427.84  96778.92  96712.8
      96479.51  90708.19  89949.14  81229.06  81005.76  78239.91  77798.83
      71498.49  69758.98  65200.33  64926.08  49490.75  42559.73  35673.41
      14681.4 ]
    

    将类别数据数字化

    from sklearn.preprocessing import LabelEncoder, OneHotEncoder
    labelencoder = LabelEncoder()
    #州 进行 label化
    X[: , 3] = labelencoder.fit_transform(X[ : , 3])
    print("labelencoder:")
    print(X[:10])
    onehotencoder = OneHotEncoder(categorical_features = [3])
    X = onehotencoder.fit_transform(X).toarray()
    print("onehot:")
    print(X[:10])
    labelencoder:
    [[165349.2 136897.8 471784.1 2]
     [162597.7 151377.59 443898.53 0]
     [153441.51 101145.55 407934.54 1]
     [144372.41 118671.85 383199.62 2]
     [142107.34 91391.77 366168.42 1]
     [131876.9 99814.71 362861.36 2]
     [134615.46 147198.87 127716.82 0]
     [130298.13 145530.06 323876.68 1]
     [120542.52 148718.95 311613.29 2]
     [123334.88 108679.17 304981.62 0]]
    onehot:
    [[0.0000000e+00 0.0000000e+00 1.0000000e+00 1.6534920e+05 1.3689780e+05
      4.7178410e+05]
     [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.6259770e+05 1.5137759e+05
      4.4389853e+05]
     [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.5344151e+05 1.0114555e+05
      4.0793454e+05]
     [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.4437241e+05 1.1867185e+05
      3.8319962e+05]
     [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.4210734e+05 9.1391770e+04
      3.6616842e+05]
     [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.3187690e+05 9.9814710e+04
      3.6286136e+05]
     [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.3461546e+05 1.4719887e+05
      1.2771682e+05]
     [0.0000000e+00 1.0000000e+00 0.0000000e+00 1.3029813e+05 1.4553006e+05
      3.2387668e+05]
     [0.0000000e+00 0.0000000e+00 1.0000000e+00 1.2054252e+05 1.4871895e+05
      3.1161329e+05]
     [1.0000000e+00 0.0000000e+00 0.0000000e+00 1.2333488e+05 1.0867917e+05
      3.0498162e+05]]
    

    躲避虚拟变量陷阱

    在回归预测中我们需要所有的数据都是numeric的,但是会有一些非numeric的数据,比如国家,省,部门,性别。这时候我们需要设置虚拟变量(Dummy variable)。做法是将此变量中的每一个值,衍生成为新的变量,是设为1,否设为0.举个例子,“性别”这个变量,我们可以虚拟出“男”和”女”两虚拟变量,男性的话“男”值为1,”女”值为,;女性的话“男”值为0,”女”值为1。

    但是要注意,这时候虚拟变量陷阱就出现了。就拿性别来说,其实一个虚拟变量就够了,比如 1 的时候是“男”, 0 的时候是”非男”,即为女。如果设置两个虚拟变量“男”和“女”,语义上来说没有问题,可以理解,但是在回归预测中会多出一个变量,多出的这个变量将会对回归预测结果产生影响。一般来说,如果虚拟变量要比实际变量的种类少一个。

    在多重线性回归中,变量不是越多越好,而是选择适合的变量。这样才会对结果准确预测。如果category类的特征都放进去,拟合的时候,所有权重的计算,都可以有两种方法实现,一种是提高某个category的w,一种是降低其他category的w,这两种效果是等效的,也就是发生了共线性,虚拟变量系数相加和为1,出现完全共线陷阱。

    但是下面测试尽然和想法不一致。。。

    X1 = X[: , 1:]
    

    拆分数据集为训练集和测试集

    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
    X1_train, X1_test, Y1_train, Y1_test = train_test_split(X1, Y, test_size = 0.2, random_state = 0)
    print(X_test)
    print("x",X_train)
    print("y",Y_train)
    ​
    print(Y_test)
    print(X1_test)
    print(Y1_test)
    

    第2步:在训练集上训练多元线性回归模型

    from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, Y_train)
    regressor1 = LinearRegression()
    regressor1.fit(X1_train, Y1_train)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

    第3步:在测试集上预测结果

    y_pred = regressor.predict(X_test)
    y1_pred = regressor1.predict(X1_test)
    y_pred0 = regressor.predict(X_train)
    
    print(y_pred)
    print(y1_pred)
    [103015.20159797 132582.27760815 132447.73845174  71976.09851258
     178537.48221055 116161.24230166  67851.69209676  98791.73374688
     113969.43533013 167921.0656955 ]
    [103015.20159796 132582.27760816 132447.73845175  71976.09851259
     178537.48221054 116161.24230163  67851.69209676  98791.73374688
     113969.43533012 167921.0656955 ]
    
    from matplotlib import pyplot
    pyplot.plot(Y_train)
    pyplot.plot(y_pred0)
    pyplot.show()
    pyplot.plot(Y_train)
    pyplot.plot(regressor1.predict(X1_train))
    pyplot.show()
    
    ​
    
    
    
    
    # regression evaluation
    

    from sklearn.metrics import r2_score
    print(r2_score(Y_test,y_pred))
    print(r2_score(Y1_test,y1_pred))

    0.9347068473282218
    0.9347068473282965

    ​```
    从r2得分来看,好了一丢丢~~

    相关文章

      网友评论

        本文标题:2019-02-24

        本文链接:https://www.haomeiwen.com/subject/hovbyqtx.html