利用N-Gram模型概括数据(Python描述)

作者: mrlevo520 | 来源:发表于2016-08-08 16:44 被阅读3410次

    Python 2.7
    IDE PyCharm 5.0.3


    数据分析热个身啊,反正也看到自然语言处理这块了。。
    

    讲在开头

    此文需要用到的相关知识包括数据清洗,正则表达式,字典,列表等。不然可能有点费劲。
    

    什么是N-Gram模型?

    在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列。在进行自然语言分析时,使用n-gram或者寻找常用词组,可以很容易的把一句话分解成若干个文字片段。摘自Python网络数据采集[RyanMitchell著]

    简单来说,就是找到核心主题词,那怎么算核心主题词呢,一般而言,重复率也就是提及次数最多的也就是最需要表达的就是核心词。下面的例子也就从这个开始展开


    临时补充

    在栗子中出现,这里拿出来单独先试一下效果

    1.string.punctuation获取所有标点符号,和strip搭配使用

    import string
    list = ['a,','b!','cj!/n']
    item=[]
    for i in list:
        i =i.strip(string.punctuation)
        item.append(i)
    print item
    
    ['a', 'b', 'cj!/n']
    
    

    2.operator.itemgetter()
    operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号)

    栗子

    import operator
    dict={'name1':'2',
          'name2':'1'}
    
    print sorted(dict.items(),key=operator.itemgetter(0),reverse=True)
    #dict.items(),键值对
    
    [('name2', '1'), ('name1', '2')]
    

    2-gram

    就以两个关键词来说吧,上个栗子来进行备注讲解

    import urllib2
    import re
    import string
    import operator
    
    def cleanText(input):
        input = re.sub('\n+', " ", input).lower() # 匹配换行用空格替换成空格
        input = re.sub('\[[0-9]*\]', "", input) # 剔除类似[1]这样的引用标记
        input = re.sub(' +', " ", input) #  把连续多个空格替换成一个空格
        input = bytes(input)#.encode('utf-8') # 把内容转换成utf-8格式以消除转义字符
        #input = input.decode("ascii", "ignore")
        return input
    
    def cleanInput(input):
        input = cleanText(input)
        cleanInput = []
        input = input.split(' ') #以空格为分隔符,返回列表
    
    
        for item in input:
            item = item.strip(string.punctuation) # string.punctuation获取所有标点符号
    
            if len(item) > 1 or (item.lower() == 'a' or item.lower() == 'i'): #找出单词,包括i,a等单个单词
                cleanInput.append(item)
        return cleanInput
    
    def getNgrams(input, n):
        input = cleanInput(input)
    
        output = {} # 构造字典
        for i in range(len(input)-n+1):
            ngramTemp = " ".join(input[i:i+n])#.encode('utf-8')
            if ngramTemp not in output: #词频统计
                output[ngramTemp] = 0 #典型的字典操作
            output[ngramTemp] += 1
        return output
    
    #方法一:对网页直接进行读取
    content = urllib2.urlopen(urllib2.Request("http://pythonscraping.com/files/inaugurationSpeech.txt")).read()
    #方法二:对本地文件的读取,测试时候用,因为无需联网
    #content = open("1.txt").read()
    ngrams = getNgrams(content, 2)
    sortedNGrams = sorted(ngrams.items(), key = operator.itemgetter(1), reverse=True) #=True 降序排列
    print(sortedNGrams)
    
    
    [('of the', 213), ('in the', 65), ('to the', 61), ('by the', 41), ('the constitution', 34),,,巴拉巴拉一堆
    

    上述栗子作用在于抓到2连接词的频率大小来排序的,但是这并不是我们想要的,你说这出现两百多次的 of the 有个猫用啊,所以,我们要进行对这些连接词啊介词啊的剔除工作。


    Deeper

    # -*- coding: utf-8 -*-
    import urllib2
    
    import re
    import string
    import operator
    
    #剔除常用字函数
    def isCommon(ngram):
        commonWords = ["the", "be", "and", "of", "a", "in", "to", "have",
                       "it", "i", "that", "for", "you", "he", "with", "on", "do", "say",
                       "this", "they", "is", "an", "at", "but","we", "his", "from", "that",
                       "not", "by", "she", "or", "as", "what", "go", "their","can", "who",
                       "get", "if", "would", "her", "all", "my", "make", "about", "know",
                       "will","as", "up", "one", "time", "has", "been", "there", "year", "so",
                       "think", "when", "which", "them", "some", "me", "people", "take", "out",
                       "into", "just", "see", "him", "your", "come", "could", "now", "than",
                       "like", "other", "how", "then", "its", "our", "two", "more", "these",
                       "want", "way", "look", "first", "also", "new", "because", "day", "more",
                       "use", "no", "man", "find", "here", "thing", "give", "many", "well"]
    
        if ngram in commonWords:
            return True
        else:
            return False
    
    def cleanText(input):
        input = re.sub('\n+', " ", input).lower() # 匹配换行用空格替换成空格
        input = re.sub('\[[0-9]*\]', "", input) # 剔除类似[1]这样的引用标记
        input = re.sub(' +', " ", input) #  把连续多个空格替换成一个空格
        input = bytes(input)#.encode('utf-8') # 把内容转换成utf-8格式以消除转义字符
        #input = input.decode("ascii", "ignore")
        return input
    
    def cleanInput(input):
        input = cleanText(input)
        cleanInput = []
        input = input.split(' ') #以空格为分隔符,返回列表
    
    
        for item in input:
            item = item.strip(string.punctuation) # string.punctuation获取所有标点符号
    
            if len(item) > 1 or (item.lower() == 'a' or item.lower() == 'i'): #找出单词,包括i,a等单个单词
                cleanInput.append(item)
        return cleanInput
    
    def getNgrams(input, n):
        input = cleanInput(input)
    
        output = {} # 构造字典
        for i in range(len(input)-n+1):
            ngramTemp = " ".join(input[i:i+n])#.encode('utf-8')
    
            if isCommon(ngramTemp.split()[0]) or isCommon(ngramTemp.split()[1]):
                pass
            else:
                if ngramTemp not in output: #词频统计
                    output[ngramTemp] = 0 #典型的字典操作
                output[ngramTemp] += 1
        return output
    
    #获取核心词在的句子
    def getFirstSentenceContaining(ngram, content):
        #print(ngram)
        sentences = content.split(".")
        for sentence in sentences:
            if ngram in sentence:
                return sentence
        return ""
    
    #方法一:对网页直接进行读取
    content = urllib2.urlopen(urllib2.Request("http://pythonscraping.com/files/inaugurationSpeech.txt")).read()
    #对本地文件的读取,测试时候用,因为无需联网
    #content = open("1.txt").read()
    ngrams = getNgrams(content, 2)
    sortedNGrams = sorted(ngrams.items(), key = operator.itemgetter(1), reverse=True) # reverse=True 降序排列
    print(sortedNGrams)
    for top3 in range(3):
        print "###"+getFirstSentenceContaining(sortedNGrams[top3][0],content.lower())+"###"
    
    
    [('united states', 10), ('general government', 4), ('executive department', 4), ('legisltive bojefferson', 3), ('same causes', 3), ('called upon', 3), ('chief magistrate', 3), ('whole country', 3), ('government should', 3),,,,巴拉巴拉一堆
    
    ### the constitution of the united states is the instrument containing this grant of power to the several departments composing the government###
    ### the general government has seized upon none of the reserved rights of the states###
    ### such a one was afforded by the executive department constituted by the constitution###
    
    

    从上述栗子我们可以看出,我们对有用词进行了删选,去掉了连接词,取出核心词排序,然后再把包含核心词的句子抓出来,这里我只是抓了前三句,对于有两三百个句子的文章,用三四句话概括起来,我想还是比较神奇的。


    BUT

    上述的方法限于主旨很明确的会议等,不然,对于小说,简直惨目忍睹的,我试了好几个英文小说,简直了,总结的是啥玩意。。。。


    最后

    材料来自于Python网络数据采集第八章,但是代码是python3.x的,而且有一些代码案例上跑不出来,所以整理一下,自己修改了一些代码片段,才跑出书上的效果。


    致谢

    Python网络数据采集[Ryan Mitchell著][人民邮电出版社]
    python strip()函数 介绍
    Python中的sorted函数以及operator.itemgetter函数

    相关文章

      网友评论

        本文标题:利用N-Gram模型概括数据(Python描述)

        本文链接:https://www.haomeiwen.com/subject/husrsttx.html