Tensorflow 入门

作者: 风驰电掣一瓜牛 | 来源:发表于2017-05-01 22:58 被阅读96次

    基本用法

    入门的第一步是了解Tensorflow中的一些基本概念和术语。(参考地址

    • 使用图 (graph) 来表示计算任务.

    • 在被称之为会话 (Session) 的上下文 (context) 中执行图.

    • 使用 tensor 表示数据.

    • 通过 变量 (Variable) 维护状态.

    • 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.

    • 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor

    • 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是 [batch, height, width, channels]. 在 Python 语言中, 返回的 tensor 是 numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是 tensorflow::Tensor 实例

    • TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.

    MNIST分类实验

    官网用MNIST手写数字分类这个实验来说明TensorFlow的用法。

    MNIST数据集

    • 28*28像素大小的手写数字图片集合,包含0~9个数字
    • 每个输入样本展开是一个784位的向量
    • 55000个训练样本,10000个测试样本,5000个验证样本

    Softmax Regression: 一个线性层

    • 输入是一个形状为[55000, 784]的张量(tensor)
    • 而类标是一个形状为[55000, 10]的张量(因为每个样本类标用one-hot向量表示,即只有一维值是1,其他维的值为0,并且一共有10个类标,所以是ont-hot向量是10维)

    具体代码:

    import tensorflow as tf
    # placeholder 占位符:TensorFlow运行某一计算时根据该占位符输入具体的
    # None表示此张量的第一个维度可以是任何长度
    x = tf.placeholder(tf.float32, [None, 784])
    # 一个Variable代表一个可修改的张量,代表着TensorFlow计算图中的一个值
    # 模型参数一般用Variable来表示
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    # 实现模型
    # 把向量化后的图片x和权重矩阵W相乘,加上偏置b,然后计算每个分类的softmax概率值
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    # 训练模型:需要定义指标,即损失函数,这里选择交叉熵
    # tf.reduce_sum 计算张量的所有元素的总和
    # 实际计算用这个函数:softmax_cross_entropy_with_logits on tf.matmul(x, W) + b)
    y_ = tf.placeholder("float", [None,10])
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    # 梯度下降算法,学习率为0.5
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    # 添加初始化变量的操作
    init = tf.global_variables_initializer()
    # 创建Session启动我们的模型
    sess = tf.Session()
    sess.run(init)
    # 开始训练,迭代1000次
    # 每次迭代,我们都会随机抓取训练数据中的100个批处理数据点
    # 然后我们用这些数据点作为参数替换之前的占位符来运行train_step
    for i in range(1000):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    # 评估模型
    # tf.argmax 返回tensor对象在某一维上最大值所在的索引值
    # tf.argmax(y,1) 返回预测的类标
    # tf.argmax(y_,1) 返回真实的类标
    # correct_prediction 是一个布尔值向量
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    

    这个模型的准确率只有92%

    Softmax Regression: 多层卷积网络

    权重初始化

    # 加入少量的噪声来打破对称性以及避免0梯度
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    # 由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项  
    def bias_variable(shape):
          initial = tf.constant(0.1, shape=shape)
          return tf.Variable(initial)
    

    卷积和池化

    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    

    第一层卷积

    它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特征。
    前两个维度是patch的大小,接着是输入通道(input channel)数目,最后是输出通道数目。 而对于每一个输出通道都有一个对应的偏置量。

    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    

    为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。

    x_image = tf.reshape(x, [-1,28,28,1])
    

    我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling

    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    

    第二层卷积

    为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。

    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    

    密集连接层

    现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    

    为了减少过拟合,我们在输出层之前加入dropout

    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    

    输出层

    最后,我们添加一个softmax层,就像前面的单层softmax regression一样。

    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    

    训练和评估模型

    使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,不同之处在于:

    • 采用更复杂的ADAM优化器
    • 在feed_dict中加入额外的参数keep_prob来控制dropout比例
    • 每100次迭代输出一次日志

    代码:

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
    # 优化器
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # 预测值
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    # 计算准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # 运行
    sess.run(tf.global_variables_initializer())
    # 迭代
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    print("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    

    这个模型的准确率达到了99.2%。

    参考

    1. TensorFlow 官网
    2. TensorFlow 中文社区

    相关文章

      网友评论

        本文标题:Tensorflow 入门

        本文链接:https://www.haomeiwen.com/subject/iagzzttx.html