在python中计算f-measure,Precision /

作者: wipen | 来源:发表于2018-05-03 11:46 被阅读1863次

    sklearn第三方库可以帮助我们快速完成任务,使用方法如下:

    from sklearn.metrics import confusion_matrix
    confusion_matrix(y_true, y_pred)
    pred = multilayer_perceptron(x, weights, biases)
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    for epoch in xrange(150):
            for i in xrange(total_batch):
                    train_step.run(feed_dict = {x: train_arrays, y: train_labels})
                    avg_cost += sess.run(cost, feed_dict={x: train_arrays, y: train_labels})/total_batch         
            if epoch % display_step == 0:
                    print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
    
    #metrics
    y_p = tf.argmax(pred, 1)
    val_accuracy, y_pred = sess.run([accuracy, y_p], feed_dict={x:test_arrays, y:test_label})
    
    print("validation accuracy:", val_accuracy)
    y_true = np.argmax(test_label,1)
    print("Precision", sk.metrics.precision_score(y_true, y_pred))
    print( "Recall", sk.metrics.recall_score(y_true, y_pred))
    print( "f1_score", sk.metrics.f1_score(y_true, y_pred))
    print( "confusion_matrix")
    print( sk.metrics.confusion_matrix(y_true, y_pred))
    fpr, tpr, tresholds = sk.metrics.roc_curve(y_true, y_pred)

    相关文章

      网友评论

        本文标题:在python中计算f-measure,Precision /

        本文链接:https://www.haomeiwen.com/subject/idykrftx.html