非极大值抑制(Non-Maximum Suppression)

作者: SnailTyan | 来源:发表于2017-12-15 17:24 被阅读137次

    文章作者:Tyan
    博客:noahsnail.com  |  CSDN  |  简书

    1. 什么是非极大值抑制

    非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部最大值,抑制极大值。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。

    2. 为什么要用非极大值抑制

    以目标检测为例:目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。Demo如下图:

    Object Detection

    左图是人脸检测的候选框结果,每个边界框有一个置信度得分(confidence score),如果不使用非极大值抑制,就会有多个候选框出现。右图是使用非极大值抑制之后的结果,符合我们人脸检测的预期结果。

    3. 如何使用非极大值抑制

    前提:目标边界框列表及其对应的置信度得分列表,设定阈值,阈值用来删除重叠较大的边界框。
    IoU:intersection-over-union,即两个边界框的交集部分除以它们的并集。

    非极大值抑制的流程如下:

    • 根据置信度得分进行排序

    • 选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除

    • 计算所有边界框的面积

    • 计算置信度最高的边界框与其它候选框的IoU。

    • 删除IoU大于阈值的边界框

    • 重复上述过程,直至边界框列表为空。

    Python代码如下:

    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    
    
    import cv2
    import numpy as np
    
    
    """
        Non-max Suppression Algorithm
    
        @param list  Object candidate bounding boxes
        @param list  Confidence score of bounding boxes
        @param float IoU threshold
    
        @return Rest boxes after nms operation
    """
    def nms(bounding_boxes, confidence_score, threshold):
        # If no bounding boxes, return empty list
        if len(bounding_boxes) == 0:
            return [], []
    
        # Bounding boxes
        boxes = np.array(bounding_boxes)
    
        # coordinates of bounding boxes
        start_x = boxes[:, 0]
        start_y = boxes[:, 1]
        end_x = boxes[:, 2]
        end_y = boxes[:, 3]
    
        # Confidence scores of bounding boxes
        score = np.array(confidence_score)
    
        # Picked bounding boxes
        picked_boxes = []
        picked_score = []
    
        # Compute areas of bounding boxes
        areas = (end_x - start_x + 1) * (end_y - start_y + 1)
    
        # Sort by confidence score of bounding boxes
        order = np.argsort(score)
    
        # Iterate bounding boxes
        while order.size > 0:
            # The index of largest confidence score
            index = order[-1]
    
            # Pick the bounding box with largest confidence score
            picked_boxes.append(bounding_boxes[index])
            picked_score.append(confidence_score[index])
    
            # Compute ordinates of intersection-over-union(IOU)
            x1 = np.maximum(start_x[index], start_x[order[:-1]])
            x2 = np.minimum(end_x[index], end_x[order[:-1]])
            y1 = np.maximum(start_y[index], start_y[order[:-1]])
            y2 = np.minimum(end_y[index], end_y[order[:-1]])
    
            # Compute areas of intersection-over-union
            w = np.maximum(0.0, x2 - x1 + 1)
            h = np.maximum(0.0, y2 - y1 + 1)
            intersection = w * h
    
            # Compute the ratio between intersection and union
            ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)
    
            left = np.where(ratio < threshold)
            order = order[left]
    
        return picked_boxes, picked_score
    
    
    # Image name
    image_name = 'nms.jpg'
    
    # Bounding boxes
    bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]
    confidence_score = [0.9, 0.75, 0.8]
    
    # Read image
    image = cv2.imread(image_name)
    
    # Copy image as original
    org = image.copy()
    
    # Draw parameters
    font = cv2.FONT_HERSHEY_SIMPLEX
    font_scale = 1
    thickness = 2
    
    # IoU threshold
    threshold = 0.4
    
    # Draw bounding boxes and confidence score
    for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score):
        (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
        cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
        cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
        cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)
    
    # Run non-max suppression algorithm
    picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold)
    
    # Draw bounding boxes and confidence score after non-maximum supression
    for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score):
        (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
        cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
        cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
        cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)
    
    # Show image
    cv2.imshow('Original', org)
    cv2.imshow('NMS', image)
    cv2.waitKey(0)
    

    源码下载地址:https://github.com/SnailTyan/deep-learning-tools/blob/master/nms.py
    记得给个Star。Demo原图在README.md里。

    实验结果:

    • 阈值为0.6
    threshold = 0.6
    • 阈值为0.5
    threshold = 0.5
    • 阈值为0.4
    threshold = 0.4

    4. 参考资料

    1. https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/

    2. http://cs.brown.edu/~pff/papers/lsvm-pami.pdf

    3. http://blog.csdn.net/shuzfan/article/details/52711706

    4. http://www.cnblogs.com/liekkas0626/p/5219244.html

    5. http://www.tk4479.net/yzhang6_10/article/details/50886747

    6. http://blog.csdn.net/qq_14845119/article/details/52064928

    相关文章

      网友评论

        本文标题:非极大值抑制(Non-Maximum Suppression)

        本文链接:https://www.haomeiwen.com/subject/iqvdwxtx.html