环境
联想笔记本 Y430P
ubuntu 16.04
GeForce GTX 850M
python3
tensorflow-gpu
前言
ubuntu默认使用集显,不支持CUDA,因此需要切换成独显GeForce GTX 850M。
CUDA必须是3.5以上的,GeForce GTX 850M是5.0
NVIDIA® GPU card with CUDA® Compute Capability 3.5 or higher
1. 安装显卡切换软件
sudo add-apt-repository ppa:nilarimogard/webupd8 #添加PPA更新源
sudo apt-get update #刷新更新源列表
sudo apt-get install prime-indicator #安装双显卡切换指示器
重启,右上角会有NVIDIA的图标
image.png
2. 禁用系统默认驱动
sudo chmod 666 /etc/modprobe.d/blacklist.conf #修改blacklist.conf权限为可写可运行
sudo vim /etc/modprobe.d/blacklist.conf #打开blacklist.conf
文件末尾添加这一行
blacklist nouveau
3. 查看GTX850M官方驱动的版本
最新的驱动是410
4. Ctrl+Alt+F1进入命令行模式
sudo service lightdm stop #关闭图形系统
sudo apt-get install nvidia-410 #也就是刚才看的410
sudo reboot #重启
5. 安装CUDA
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.1.85-1_amd64.deb
sudo apt install ./cuda-repo-ubuntu1604_9.1.85-1_amd64.deb
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt update
# Install CUDA and tools. Include optional NCCL 2.x
sudo apt install cuda9.0 cuda-cublas-9-0 cuda-cufft-9-0 cuda-curand-9-0 \
cuda-cusolver-9-0 cuda-cusparse-9-0 libcudnn7=7.2.1.38-1+cuda9.0 \
libnccl2=2.2.13-1+cuda9.0 cuda-command-line-tools-9-0
6. 安装tensorflow-gpu
pip3 install tensorflow-gpu
7. 测试代码,第一次运行时间很长
python3 1_tf_reduce_mean.py
# 1_tf_reduce_mean.py
import tensorflow as tf
import numpy as np
# Computes the mean of elements across dimensions of a tensor. (deprecated arguments)
# tf.reduce_mean(
# input_tensor,
# axis=None,
# keepdims=None,
# name=None,
# reduction_indices=None,
# keep_dims=None
# )
c = np.array([[3.,4], [5.,6], [6.,7]])
step = tf.reduce_mean(c, 1)
with tf.Session() as sess:
print(sess.run(step))
网友评论