美文网首页OpenCV 学习笔记
OpenCV 笔记(18):轮廓的更多属性

OpenCV 笔记(18):轮廓的更多属性

作者: fengzhizi715 | 来源:发表于2024-01-19 22:02 被阅读0次

    该系列文章前面几篇介绍了轮廓以及其矩特征、几何特征等等。

    本文会介绍轮廓更多的属性,它们可用于识别和分类物体、测量形状和分析图像。

    1. 长宽比

    长宽比是轮廓的宽度与高度的比值。它可以用于识别物体的形状。

    aspect radio = \frac{w}{h}

    2. 矩形度

    矩形度是轮廓区域面积与其最小外接矩形区域面积的比值。它是衡量轮廓与矩形相似程度的一个参数。

    rectangularity = \frac{contourArea}{minAreaRect Area}

    3. 范围

    范围是轮廓区域面积与其外接矩形区域面积的比值。它可以用于衡量轮廓的大小。

    extent = \frac{contourArea}{boundingRect Area}

    下面的例子是之前使用过的,分别画了一个正方形、三角形、五边形和圆。通过轮廓查找找到它们的轮廓后,计算轮廓的长宽比、矩形度、范围。

    #include <iostream>
    #include <opencv2/opencv.hpp>
    #include "opencv2/imgproc.hpp"
    #include "opencv2/highgui.hpp"
    
    using namespace std;
    using namespace cv;
    
    bool ascendSort(vector<Point> a,vector<Point> b)
    {
        return contourArea(a) > contourArea(b);
    }
    
    int main(int argc, char **argv) {
        Mat image(1600, 1600, CV_8UC3, Scalar(0, 0, 0));
    
        // 画一个正方形
        rectangle(image, Point(100, 100), Point(400, 400), Scalar(255, 255, 0), -1);
    
        // 画一个三角形
        Point trianglePoints[3] = {Point(500, 800), Point(250, 1300), Point(800, 1100)};
        fillConvexPoly(image, trianglePoints, 3, Scalar(255, 255, 0));
    
        // 画一个五边形
        Point pentagonPoints[5];
        for (int i = 0; i < 5; i++) {
            pentagonPoints[i] = Point(600 + 200 * cos(2 * CV_PI * i / 5), 600 + 200 * sin(2 * CV_PI * i / 5));
        }
        fillConvexPoly(image, pentagonPoints, 5, Scalar(255, 255, 0));
    
        // 画一个圆形
        circle(image, Point(1200, 1200), 300, Scalar(255, 255, 0), -1);
    
        Mat gray,thresh;
        cvtColor(image, gray, cv::COLOR_BGR2GRAY);
        threshold(gray,thresh,0,255,THRESH_BINARY | THRESH_OTSU);
        imshow("thresh", thresh);
    
        vector<vector<Point>> contours;
        vector<Vec4i> hierarchy;
        findContours(thresh, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
        sort(contours.begin(), contours.end(), ascendSort);//ascending sort
    
        for (size_t i = 0; i< contours.size(); i++) {
            double area = contourArea(contours[i]);
            Rect rect = boundingRect(contours[i]);
            RotatedRect rrt = minAreaRect(contours[i]);
    
            float aspect_radio = (float)rect.width/rect.height;
    
            double rectangularity = area / (rrt.size.width*rrt.size.height);
    
            double extent = area / (rect.width*rect.height);
    
            printf("aspect_radio = %f, rectangularity = %f, extent = %f \n",aspect_radio,rectangularity,extent);
        }
    
        imshow("result", image);
        waitKey(0);
        return 0;
    }
    

    执行结果:

    aspect_radio = 1.000000, rectangularity = 0.784830, extent = 0.780308 
    aspect_radio = 1.099800, rectangularity = 0.500556, extent = 0.407986 
    aspect_radio = 0.950262, rectangularity = 0.691453, extent = 0.686282 
    aspect_radio = 1.000000, rectangularity = 1.000000, extent = 0.993367 
    
    绘制几个多边形.png

    之前,在该系列文章第十六篇中使用 approxPolyDP() 函数把圆近似成16边形。现在通过计算矩形度还是很容易区分出圆的,圆的矩形度 :\frac{\pi R^2}{4R^2} = \frac{\pi}{4} \approx 0.785

    4. 极点

    极点是指轮廓的最顶部,最底部,最右侧和最左侧的点。

    下面的代码,读取一张树叶的图,进行二值化,再通过轮廓查找找到最大的轮廓,计算出其极点并在原图中标记出来。

    #include <iostream>
    #include "opencv2/imgproc.hpp"
    #include "opencv2/highgui.hpp"
    
    using namespace std;
    using namespace cv;
    
    bool ascendSort(vector<Point> a,vector<Point> b)
    {
        return contourArea(a) > contourArea(b);
    }
    
    int main(int argc, char **argv) {
        Mat src = imread(".../leaf.png");
        imshow("src", src);
    
        Mat gray,thresh;
        cvtColor(src, gray, cv::COLOR_BGR2GRAY);
    
        threshold(gray,thresh,0,255,THRESH_BINARY_INV | THRESH_OTSU);
        imshow("thresh", thresh);
    
        vector<vector<Point>> contours;
        vector<Vec4i> hierarchy;
        findContours(thresh, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
        sort(contours.begin(), contours.end(), ascendSort);//ascending sort
        cout << "contours.size() = " << contours.size() << endl;
    
        //计算轮廓极值点
        Point left = *min_element(contours[0].begin(), contours[0].end(),
                                  [](const Point& lhs, const Point& rhs) {
                                      return lhs.x < rhs.x;
                                  });
        Point right = *max_element(contours[0].begin(), contours[0].end(),
                                   [](const Point& lhs, const Point& rhs) {
                                       return lhs.x < rhs.x;
                                   });
        Point top = *min_element(contours[0].begin(), contours[0].end(),
                                 [](const Point& lhs, const Point& rhs) {
                                     return lhs.y < rhs.y;
                                 });
        Point bottom = *max_element(contours[0].begin(), contours[0].end(),
                                    [](const Point& lhs, const Point& rhs) {
                                        return lhs.y < rhs.y;
                                    });
    
        circle(src,left,2,Scalar(255,0,0),8);
        circle(src,right,2,Scalar(255,0,0),8);
        circle(src,top,2,Scalar(255,0,0),8);
        circle(src,bottom,2,Scalar(255,0,0),8);
    
        int fontFace = FONT_HERSHEY_PLAIN;
        double fontScale = 2;
        int thickness = 6;
    
        putText(src,"left",left,fontFace,fontScale,Scalar(255, 0, 0),thickness);
        putText(src,"right",right,fontFace,fontScale,Scalar(255, 0, 0),thickness);
        putText(src,"top",top,fontFace,fontScale,Scalar(255, 0, 0),thickness);
        putText(src,"bottom",bottom,fontFace,fontScale,Scalar(255, 0, 0),thickness);
    
        imshow("result", src);
    
        waitKey(0);
        return 0;
    }
    
    标记极点.png

    5. 方向

    方向是是轮廓的倾斜角度。方向可以用于识别物体的方向。

    下面的代码,通过将轮廓进行椭圆拟合来获取轮廓的方向。

    #include "opencv2/imgproc.hpp"
    #include "opencv2/highgui.hpp"
    
    using namespace std;
    using namespace cv;
    
    bool ascendSort(vector<Point> a,vector<Point> b)
    {
        return contourArea(a) > contourArea(b);
    }
    
    int main(int argc, char **argv) {
        Mat src = imread(".../spoon.jpg");
        imshow("src", src);
    
        Mat gray,thresh;
        cvtColor(src, gray, cv::COLOR_BGR2GRAY);
    
        threshold(gray,thresh,0,255,THRESH_BINARY_INV | THRESH_OTSU);
        imshow("thresh", thresh);
    
        vector<vector<Point>> contours;
        vector<Vec4i> hierarchy;
        findContours(thresh, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
        sort(contours.begin(), contours.end(), ascendSort);//ascending sort
    
        for (size_t i = 0; i< contours.size(); i++) {
            double area = contourArea(contours[i]);
    
            if (area < 1000) {
                continue;
            }
    
            RotatedRect rrt = fitEllipse(contours[i]);
            Point2f center = rrt.center;
            float angle = rrt.angle;
            ellipse(src,rrt, Scalar(0, 0, 255), 8, 8);
    
            std::string text = "angle:" + to_string(angle);
            int fontFace = FONT_HERSHEY_PLAIN;
            double fontScale = 5;
            int thickness = 8;
            putText(src,text,center,fontFace,fontScale,Scalar(255, 0, 0),thickness);
        }
        imshow("result", src);
    
        waitKey(0);
        return 0;
    }
    
    标记方向.png

    6. 等效直径

    等效直径是面积与轮廓面积相同的圆的直径。它可以用于衡量轮廓的大小和形状。

    equivalent diameter = \sqrt{\frac{4*contourArea}{\pi}}

    7. 坚实度

    坚实度是轮廓区域面积与其凸包区域面积的比值。它可以用于衡量轮廓的密实程度。

    solidity = \frac{contourArea}{convexHull Area}

    8. 总结

    本文介绍了很多轮廓的属性,这些属性可以根据特定的应用需求进行选择。例如,在物体识别中,可以使用轮廓的长宽比、矩形度、范围和坚实度来识别物体的形状和大小。在形状分析中,可以使用轮廓的等效直径和方向来分析形状的几何特性。

    相关文章

      网友评论

        本文标题:OpenCV 笔记(18):轮廓的更多属性

        本文链接:https://www.haomeiwen.com/subject/jtmjodtx.html