相关文献:
数据结构与算法(一):基础理论
数据结构与算法(二):线性表的实现
数据结构与算法(三):线性表算法设计练习
数据结构与算法(四):斐波那契数列
数据结构与算法(五):LRU
数据结构与算法(六):栈
数据结构与算法(七):栈/队列的算法解题思想
数据结构与算法(八):队列
数据结构与算法(九):树形结构/二叉树/线索化二叉树
数据结构与算法(十):哈夫曼树
数据结构与算法(十一):图形结构
数据结构与算法(十二):图的应用-最小生成树-Prim/Kruskal
数据结构与算法(十三):图的应用-最短路径-Dijkstra/Floyd
数据结构与算法(十四):图的应用-拓扑排序/关键路径
一、拓扑排序
1.简介
有⼀个表示⼯程的有向图中,⽤顶点表示活动,⽤弧表示活动之间的优先关系,这样有向图为顶点表示活动的⽹。我们称为AOV⽹(Activity On Vertex Network)。
- 无回路(无回环);
- 活动之间有先后关系(不带权重);
- 拓扑排序只是一种选择策略,并不是唯一答案;
注意:不是所有的图都能拓扑排序
所谓拓扑排序,其实就是对⼀个有向图构造拓扑序列的过程。
构造过程拓扑序列会产⽣2个结果:
1.如果此⽹中的全部顶点被输出
,则说明它不存在环(回路)的AOV⽹
;
2.如果输出的顶点数少了,哪怕仅少了⼀个,也说明这个⽹存在环(回路),不是AOV⽹
设G = (V,E)是⼀个具有n个顶点的有向图, V中的顶点序列V1,V2,.....,Vn.若满⾜从顶点 Vi 到 Vj 有⼀条路径,则在顶点序列 Vi 必须在 Vj 之前, 则我们称这样的顶点序列成为拓扑序列。
2.拓扑排序算法解析
给定图进行拓扑排序的时候,我们基本上是无法确定这图是否能够完整地进行拓扑排序的,我们只需要进行一边排序就行了,根据结果去判断这图能不能行(进行拓扑排序之后,按照一定的顺序去输出了全部的顶点则可以进行拓扑排序啦)。
- 问题一:AOV ⽹图的存储问题?
在设计算法的时候涉及到一些删除操作,选用邻接表去存储更加方便。
- 问题二:如何知道网图中起点是哪个顶点?
需要对每个顶点进行判断,入度为0的顶点可作为出发点。
- 问题三:邻接表的结构设计?
in: 入度 (有几条边指向该顶点)
data:数据
firstedge:边表 (该顶点所指向的顶点 - 链表)
算法基本思路:
从AOV⽹中选择⼀个⼊度in=0的顶点输出,然后从删去此顶点,并删除以此顶点为尾的弧。继续重复此步骤,直到输出全部顶点或AOV⽹中不存在⼊度为0的顶点为⽌。
需要借助⼀个数据结构栈
。来帮助我们解决避免每次查找时,都要去遍历AOV图中的顶点表查找有没有⼊度为0的顶点。
- 创建⼀个栈(stack),⽤来存储⼊度in为0 的顶点序号;
- 遍历AOV图中顶点表,判断⼊度为0的顶点全部⼊栈;
举例算法过程:
第一次分析
第二次分析
第三次分析
第四次分析
... ...
下面用算法去实现这个过程。
3.拓扑排序算法实现
- 邻接矩阵结构
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 14
#define INFINITYC 65535
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;
/*邻接矩阵结构 */
typedef struct
{
int vexs[MAXVEX];
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
- 邻接表结构
/* 邻接表结构****************** */
//边表结点
typedef struct EdgeNode
{
//邻接点域,存储该顶点对应的下标
int adjvex;
//用于存储权值,对于非网图可以不需要
int weight;
//链域,指向下一个邻接点
struct EdgeNode *next;
}EdgeNode;
//顶点表结点
typedef struct VertexNode
{
//顶点入度
int in;
//顶点域,存储顶点信息
int data;
//边表头指针
EdgeNode *firstedge;
}VertexNode, AdjList[MAXVEX];
//图结构
typedef struct
{
AdjList adjList;
//图中当前顶点数和边数
int numVertexes,numEdges;
}graphAdjList,*GraphAdjList;
- 构成邻接矩阵 - AOV网图
/*1.构成AOV网图*/
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=MAXEDGE;
G->numVertexes=MAXVEX;
/* 初始化图 */
for (i = 0; i < G->numVertexes; i++)
{
G->vexs[i]=i;
}
/* 初始化图 */
for (i = 0; i < G->numVertexes; i++)
{
for ( j = 0; j < G->numVertexes; j++)
{
G->arc[i][j]=0;
}
}
G->arc[0][4]=1;
G->arc[0][5]=1;
G->arc[0][11]=1;
G->arc[1][2]=1;
G->arc[1][4]=1;
G->arc[1][8]=1;
G->arc[2][5]=1;
G->arc[2][6]=1;
G->arc[2][9]=1;
G->arc[3][2]=1;
G->arc[3][13]=1;
G->arc[4][7]=1;
G->arc[5][8]=1;
G->arc[5][12]=1;
G->arc[6][5]=1;
G->arc[8][7]=1;
G->arc[9][10]=1;
G->arc[9][11]=1;
G->arc[10][13]=1;
G->arc[12][9]=1;
}
- 将AOV网图借助邻近矩阵转换成邻接表结构
/*2.将AOV网图借助邻近矩阵转换成邻接表结构*/
void CreateALGraph(MGraph G,GraphAdjList *GL)
{
int i,j;
EdgeNode *e;
//创建图
*GL = (GraphAdjList)malloc(sizeof(graphAdjList));
//对图中的顶点数.弧数赋值
(*GL)->numVertexes=G.numVertexes;
(*GL)->numEdges=G.numEdges;
//读入顶点信息,建立顶点表
for(i= 0;i <G.numVertexes;i++)
{
(*GL)->adjList[i].in=0;
(*GL)->adjList[i].data=G.vexs[i];
//将边表置为空表
(*GL)->adjList[i].firstedge=NULL;
}
//建立边表
for(i=0;i<G.numVertexes;i++)
{
for(j=0;j<G.numVertexes;j++)
{
if (G.arc[i][j]==1)
{
//创建空的边表结点
e=(EdgeNode *)malloc(sizeof(EdgeNode));
//邻接序号为j
e->adjvex=j;
// 将当前顶点上的指向的结点指针赋值给e
e->next=(*GL)->adjList[i].firstedge;
//将当前顶点的指针指向e
(*GL)->adjList[i].firstedge=e;
(*GL)->adjList[j].in++;
}
}
}
}
- 拓扑排序
/*3.拓扑排序. 若AOV网图无回路则输出拓扑排序的序列并且返回状态值1,若存在回路则返回状态值0*/
/*拓扑排序:解决的是一个工程能否顺序进行的问题!*/
Status TopologicalSort(GraphAdjList GL){
EdgeNode *e;
int i,k,gettop;
//用于栈指针下标
int top=0;
//用于统计输出顶点的个数
int count=0;
//建栈将入度为0的顶点入栈(目的:为了避免每次查找时都要遍历顶点表查找有没有入度为0的顶点)
int *stack=(int *)malloc(GL->numVertexes * sizeof(int) );
//1.遍历邻接表-顶点表,将入度in为0的顶点入栈
/*参考图1> 此时stack栈中应该成为0,1,3.即V0,V1,V3的顶点入度为0*/
for(i = 0; i<GL->numVertexes; i++)
//将入度为0的顶点入栈
if(0 == GL->adjList[i].in)
stack[++top]=i;
printf("top = %d\n",top);
//2.循环栈结构(当栈中有元素则循环继续)
while(top!=0)
{
//出栈
gettop=stack[top--];
printf("%d -> ",GL->adjList[gettop].data);
//输出顶点,并计数
count++;
//遍历与栈顶相连接的弧
for(e = GL->adjList[gettop].firstedge; e; e = e->next)
{
//获取与gettop连接的顶点
k=e->adjvex;
//1.将与gettop连接的顶点入度减1;
//2.判断如果当前减1后为0,则入栈
if( !(--GL->adjList[k].in) )
//将k入栈到stack中,并且top加1;
stack[++top]=k;
}
}
/*思考:3 -> 1 -> 2 -> 6 -> 0 -> 4 -> 5 -> 8 -> 7 -> 12 -> 9 -> 10 ->13 -> 11
这并不是唯一的拓扑排序结果.
分析算法:将入度为0的顶点入栈的时间复杂度为O(n), 而之后的while 循环,每个顶点进一次栈,并且出一次栈. 入度减1, 则共执行了e次. 那么整个算法的时间复杂度为O(n+e)*/
printf("\n");
//判断是否把所有的顶点都输出. 则表示找到了拓扑排序;
if(count < GL->numVertexes)
return ERROR;
else
return OK;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, 拓扑排序!\n");
MGraph G;
GraphAdjList GL;
int result;
CreateMGraph(&G);
CreateALGraph(G,&GL);
result=TopologicalSort(GL);
printf("result:%d",result);
return 0;
}
二、关键路径
1.简介
在⼀个表示⼯程的带权有向图中,⽤顶点表示事件,⽤有向边表示活动,⽤边上的权值表示活动的持续时间,这种有向图的边表表示活动的⽹,我们称之为 AOE ⽹(Activity On Edge Network)。
没有⼊边的顶点称为始点或源点
;
没有出边的顶点称为终点或汇点
;
由于⼀个⼯程,总有⼀个开始,⼀个结束,所以正常情况下,AOE⽹只有⼀个源点和⼀个汇点。
- 路径上各个活动所持续的时间之和称为路径⻓度;
- 从源点到汇点具有最⼤的路径叫关键路径;
- 在关键路径上的活动叫关键活动;
- AOE网就是带权值的AOV网。
2.关键路径算法解析
求解过程⼏个核⼼参数:
事件最早发⽣的时间 etv
(earliest time of vertex): 即顶点Vk 的最早发⽣时间;事件最晚发⽣时间 ltv
(latest time of vertex): 即顶点Vk 的最晚发⽣时间,也就是每个顶点对应的事件最晚需要开始的时间,超出此时间将会延误整个⼯期;活动的最早开⼯时间 ete
(earliest time of edge); 即弧Ak 的最早发⽣时间;活动的最晚开⼯时间 lte
(latest time of edge); 即弧Ak 的最晚发⽣时间,也就是不推迟⼯期的最晚开⼯时间。
算法思路:
求事件的最早发⽣时间 etv
的过程,就是从头到尾去找拓扑序列的过程。所以在求解关键路径之前,我们需要调⽤⼀次拓扑排序的序列去计算 etv
和拓扑序列列表。
-
etv
的求解
解释: 找到事件的耗时.例如要完成V3. 需要有V1,V2 .2个条件同时达成.那么V2 需要12⼩时, V1需要8⼩时. 此时需要等待12⼩时,所以需要选择耗时更⻓的为最早发⽣时间。
求etv的公式-
ltv
的求解
事件最晚发⽣时间 ltv
(latest time of vertex): 即顶点Vk 的最晚发⽣时间,也就是每个顶点对应的事件最晚需要开始的时间,超出此时间将会延误整个⼯期。
... ...
求ltv的公式最终结果:
-
ete
和lte
的求解
活动的最早开⼯时间 ete
(earliest time of edge); 即弧Ak 的最早发⽣时间
活动的最晚开⼯时间 lte
(latest time of edge); 即弧Ak 的最晚发⽣时间,也就是不推迟⼯期的最晚开⼯时间
拓扑序列: 指的是事件在执⾏的顺序
关键活动: 指的是从开始到结束具有最⼤⻓度的路径叫关键路径,⽽关键路径上的的活动叫做关键活动
... ... ...
关键活动3.算法实现
使用邻接表去存储:
存储AOE网:
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 30
#define MAXVEX 30
#define INFINITYC 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
/* 邻接矩阵结构 */
typedef struct
{
int vexs[MAXVEX];
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/* 邻接表结构****************** */
//边表结点
typedef struct EdgeNode
{
//邻接点域,存储该顶点对应的下标
int adjvex;
//用于存储权值,对于非网图可以不需要
int weight;
//链域,指向下一个邻接点
struct EdgeNode *next;
}EdgeNode;
//顶点表结点
typedef struct VertexNode
{
//顶点入度
int in;
//顶点域,存储顶点信息
int data;
//边表头指针
EdgeNode *firstedge;
}VertexNode, AdjList[MAXVEX];
typedef struct
{
AdjList adjList;
//图中当前顶点数和边数
int numVertexes,numEdges;
}graphAdjList,*GraphAdjList;
/* **************************** */
/* 关于AOE网图的存储代码段-Begin */
//1.完成AOE网图关于邻接矩阵的存储
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=13;
G->numVertexes=10;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
G->vexs[i]=i;
}
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j]=INFINITYC;
}
}
G->arc[0][1]=3;
G->arc[0][2]=4;
G->arc[1][3]=5;
G->arc[1][4]=6;
G->arc[2][3]=8;
G->arc[2][5]=7;
G->arc[3][4]=3;
G->arc[4][6]=9;
G->arc[4][7]=4;
G->arc[5][7]=6;
G->arc[6][9]=2;
G->arc[7][8]=5;
G->arc[8][9]=3;
}
将邻接矩阵转化成邻接表:
//2.将邻近矩阵转化成邻接表
void CreateALGraph(MGraph G,GraphAdjList *GL){
int i,j;
EdgeNode *e;
*GL = (GraphAdjList)malloc(sizeof(graphAdjList));
(*GL)->numVertexes=G.numVertexes;
(*GL)->numEdges=G.numEdges;
//读入顶点信息,建立顶点表
for(i= 0;i <G.numVertexes;i++)
{
(*GL)->adjList[i].in=0;
(*GL)->adjList[i].data=G.vexs[i];
//将边表置为空表
(*GL)->adjList[i].firstedge=NULL;
}
//建立边表
for(i=0;i<G.numVertexes;i++)
{
for(j=0;j<G.numVertexes;j++)
{
if (G.arc[i][j]!=0 && G.arc[i][j]<INFINITYC)
{
e=(EdgeNode *)malloc(sizeof(EdgeNode));
//邻接序号为j
e->adjvex=j;
e->weight=G.arc[i][j];
//将当前顶点上的指向的结点指针赋值给e
e->next=(*GL)->adjList[i].firstedge;
//将当前顶点的指针指向e
(*GL)->adjList[i].firstedge=e;
(*GL)->adjList[j].in++;
}
}
}
}
关键路径的求解也是需要进行拓扑排序
关键路径是拓扑排序结果中的其中一种
//拓扑排序
Status TopologicalSort(GraphAdjList GL){
//若GL无回路,则输出拓扑排序序列且返回状态OK, 否则返回状态ERROR;
EdgeNode *e;
int i,k,gettop;
//栈指针下标;
int top = 0;
//用于统计输出的顶点个数.作为拓扑排序是否存在回路的判断依据;
int count = 0;
//建栈,将入度in = 0的顶点入栈;
int *stack = (int *)malloc(GL->numVertexes * sizeof(int));
//遍历顶点表上入度in �= 0 入栈
for (i = 0; i < GL->numVertexes;i++) {
//printf("%d %d\n",i,GL->adjList[i].in);
if ( 0 == GL->adjList[i].in ) {
stack[++top] = i;
}
}
//* stack2 的栈指针下标
top2 = 0;
//* 初始化拓扑序列栈
stack2 = (int *)malloc(sizeof(int) * GL->numVertexes);
//* 事件最早发生时间数组
etv = (int *)malloc(sizeof(GL->numVertexes * sizeof(int)));
//* 初始化etv 数组
for (i = 0 ; i < GL->numVertexes; i++) {
//初始化
etv[i] = 0;
}
printf("TopologicSort:\t");
while (top != 0) {
gettop = stack[top--];
printf("%d -> ", GL->adjList[gettop].data);
count++;
//将弹出的顶点序号压入拓扑排序的栈中;
stack2[++top2] = gettop;
//例如gettop为V0 ,那么与V0相连接的结点就有etv[1] = 3; etv[2] = 4;
//例如gettop为V1 ,那么与V1连接的结点就有etv[4]= 3+6=9; etv[3] = 8;
//例如gettop为V2 ,那么与V2连接的结点就有etv[5]= 4+7=11; etv[3] = 12;
//例如gettop为V3 ,那么与V3连接的结点就有etv[4]= 12+3=15;
for(e = GL->adjList[gettop].firstedge; e; e = e->next)
{
k = e->adjvex;
//将i顶点连接的邻接顶点入度减1,如果入度减一后为0,则入栈
if(!(--GL->adjList[k].in))
stack[++top] = k;
//求各顶点事件的最早发生的时间etv值
//printf("etv[gettop]+e->weight = %d\n",etv[gettop]+e->weight);
//printf("etv[%d] = %d\n",k,etv[k]);
if ((etv[gettop] + e->weight) > etv[k]) {
etv[k] = etv[gettop] + e->weight;
}
}
}
printf("\n");
//打印etv(事件最早发生时间数组)
// for (i = 0; i < GL->numVertexes; i++) {
// printf("etv[%d] = %d\n",i,etv[i]);
// }
// printf("\n");
if(count < GL->numVertexes)
return ERROR;
else
return OK;
return OK;
}
//求关键路径, GL为有向网,则输出G的各项关键活动;
void CriticalPath(GraphAdjList GL){
EdgeNode *e;
int i,gettop,k,j;
//声明活动最早发生时间和最迟发生时间变量;
int ete,lte;
//求得拓扑序列,计算etv数组以及stack2的值
TopologicalSort(GL);
//打印etv数组(事件最早发生时间)
printf("etv:\n");
for(i = 0; i < GL->numVertexes; i++)
printf("etv[%d] = %d \n",i,etv[i]);
printf("\n");
//事件最晚发生时间数组
ltv = (int *)malloc(sizeof(int) * GL->numVertexes);
//初始化ltv数组
for (i = 0; i < GL->numVertexes; i++) {
//初始化ltv数组. 赋值etv最后一个事件的值
ltv[i] = etv[GL->numVertexes-1];
//printf("ltv[%d] = %d\n",i,ltv[i]);
}
//计算ltv(事件最晚发生时间) 出栈求ltv
while (top2 != 0) {
//出栈(栈顶元素)
gettop = stack2[top2--];
//找到与栈顶元素连接的顶点; 例如V0是与V1和V2连接
for (e = GL->adjList[gettop].firstedge; e; e = e->next) {
//获取与gettop 相连接的顶点
k = e->adjvex;
//计算min(ltv[k]-e->weight,ltv[gettop])
if (ltv[k] - e->weight < ltv[gettop]) {
//更新ltv 数组
ltv[gettop] = ltv[k] - e->weight;
}
}
}
//打印ltv 数组
printf("ltv:\n");
for (i = 0 ; i < GL->numVertexes; i++) {
printf("ltv[%d] = %d \n",i,ltv[i]);
}
printf("\n");
//求解ete,lte 并且判断lte与ete 是否相等.相等则是关键活动;
//2层循环(遍历顶点表,边表)
for(j=0; j<GL->numVertexes;j++)
{
for (e = GL->adjList[j].firstedge; e; e = e->next) {
//获取与j连接的顶点;
k = e->adjvex;
//ete 就是表示活动 <Vk, Vj> 的最早开工时间, 是针对这条弧来说的.而这条弧的弧尾顶点Vk 的事件发生了, 它才可以发生. 因此ete = etv[k];
ete = etv[j];
//lte 表示活动<Vk, Vj> 的最晚开工时间, 但此活动再晚也不能等Vj 事件发生才开始,而是必须在Vj 事件之前发生. 所以lte = ltv[j] - len<Vk, Vj>.
lte = ltv[k]-e->weight;
//如果ete == lte 则输出j,k以及权值;
if (ete == lte) {
printf("<%d-%d> length:%d\n",GL->adjList[j].data, GL->adjList[k].data, e->weight);
}
}
}
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, 关键路径的求解!\n");
MGraph G;
GraphAdjList GL;
CreateMGraph(&G);
CreateALGraph(G,&GL);
//拓扑排序
//TopologicalSort(GL);
//关键路径
CriticalPath(GL);
return 0;
}
网友评论