美文网首页我爱编程
Keras 练习1 - MLP

Keras 练习1 - MLP

作者: YANWeichuan | 来源:发表于2018-08-08 15:44 被阅读0次

    《Tensorflow + Keras深度学习人工智能实践应用》 一书第7章的完整例子,一行行代码敲出来,更有利于理解整个例子的工作流程和结果。

    机器学习的几个分类:

    • 多层感知器(Multi-layer Perceptron,MLP)
    • 深度神经网络(Deep Neural Network,DNN)
    • 卷积神经网络(Convolutional Neural Network,CNN)
    • 递归神经网络(Recurrent Neural Network,RNN)
    import numpy as np
    import pandas as pd
    from keras.utils import np_utils
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import Dropout
    
    import matplotlib.pyplot as plt
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    np.random.seed(10)
    
    (x_train_image, y_train_label), (x_test_image, y_test_label) = mnist.load_data()
    
    x_train = x_train_image.reshape(60000, 784).astype("float32")
    x_test = x_test_image.reshape(10000, 784).astype("float32")
    
    x_train_normal = x_train / 255
    x_test_normal = x_test / 255
    
    y_train_onehot = np_utils.to_categorical(y_train_label)
    y_test_onehot = np_utils.to_categorical(y_test_label)
    
    model = Sequential()
    model.add(Dense(units = 1000,
                    input_dim = 784,
                    kernel_initializer = 'normal',
                    activation = 'relu'))
    model.add(Dropout(0.5))
    
    model.add(Dense(units = 1000,
                    kernel_initializer = 'normal',
                    activation = 'relu'))
    model.add(Dropout(0.5))
    
    model.add(Dense(units = 10,
                    kernel_initializer = 'normal',
                    activation = 'softmax'))
    
    print(model.summary())
    
    
    model.compile(loss = "categorical_crossentropy",
                optimizer = "adam", metrics = ["accuracy"])
    
    history = model.fit(x = x_train_normal,
                    y = y_train_onehot,
                    validation_split = 0.2,
                    epochs = 10,
                    batch_size = 200,
                    verbose = 2)
    
    def show_train_history(train_history, train, val):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[val])
        plt.title("Train History")
        plt.ylabel(train)
        plt.xlabel("Epochs")
        plt.legend(["train", "validation"], loc="upper left")
        plt.show()
    
    def plot_image_label_prediction(images, labels, prediction, idx = 0, num = 10):
        fig = plt.gcf()
        fig.set_size_inches(12, 14)
        if num > 25:
            num = 25
        for i in range(0, num):
            ax = plt.subplot(5, 5, 1 + i)
            ax.imshow(images[idx], cmap="binary")
            title = "label = " + str(labels[idx])
            if len(prediction) > 0:
                title += ", prediction = " + str(prediction[idx])
            ax.set_title(title, fontsize = 12)
            ax.set_xticks([])
            ax.set_yticks([])
            idx += 1
        plt.show()
    
    
    show_train_history(history, "acc", "val_acc")
    show_train_history(history, "loss", "val_loss")
    
    scores = model.evaluate(x_test_normal, y_test_onehot)
    print("accuracy = ", scores[1])
    
    prediction = model.predict_classes(x_test_normal)
    #plot_image_label_prediction(x_test_image, y_test_label, prediction, idx=340, num=25)
    
    print(pd.crosstab(y_test_label, prediction, rownames = ["label"], colnames = ["predict"]))
    
    df = pd.DataFrame({"label": y_test_label, "predict": prediction})
    print(df[(df.label == 5) & (df.predict == 3)])
    

    训练及精度:

    Train on 48000 samples, validate on 12000 samples
    Epoch 1/10
     - 10s - loss: 0.3634 - acc: 0.8870 - val_loss: 0.1342 - val_acc: 0.9608
    Epoch 2/10
     - 10s - loss: 0.1585 - acc: 0.9520 - val_loss: 0.1003 - val_acc: 0.9702
    Epoch 3/10
     - 10s - loss: 0.1182 - acc: 0.9626 - val_loss: 0.0889 - val_acc: 0.9725
    Epoch 4/10
     - 10s - loss: 0.0965 - acc: 0.9704 - val_loss: 0.0857 - val_acc: 0.9745
    Epoch 5/10
     - 10s - loss: 0.0838 - acc: 0.9733 - val_loss: 0.0798 - val_acc: 0.9781
    Epoch 6/10
     - 10s - loss: 0.0762 - acc: 0.9756 - val_loss: 0.0803 - val_acc: 0.9770
    Epoch 7/10
     - 10s - loss: 0.0640 - acc: 0.9800 - val_loss: 0.0756 - val_acc: 0.9770
    Epoch 8/10
     - 10s - loss: 0.0625 - acc: 0.9798 - val_loss: 0.0787 - val_acc: 0.9765
    Epoch 9/10
     - 10s - loss: 0.0550 - acc: 0.9816 - val_loss: 0.0751 - val_acc: 0.9802
    Epoch 10/10
     - 10s - loss: 0.0520 - acc: 0.9836 - val_loss: 0.0780 - val_acc: 0.9772
    
    10000/10000 [==============================] - 1s 100us/step
    accuracy =  0.9797
    

    如何判断过拟合呢?

    如果loss和acc的在训练比validation的好过多,则说明过拟合。在例子中,通过增大网络中的单元数、增加中间隐藏层,增加dropout层这几种方法来减少过拟合。

    相关文章

      网友评论

        本文标题:Keras 练习1 - MLP

        本文链接:https://www.haomeiwen.com/subject/kwkxbftx.html