福利|热门技术看什么?这份书单告诉你!

作者: 阿里云云栖号 | 来源:发表于2017-12-11 10:19 被阅读758次

    摘要:这是一份关于数据科学、商业分析、大数据、机器学习、算法、数据科学工具和相关程序语言的福利书单。又骗你买书?不,我们还有电子书!心动不如行动,赶快进来看看吧!

    这份书单源自网络。虽然所列图书都是免费提供的,但如果您有深入学习的打算,我还是推荐您购买纸质版书籍。作者花费大量时间整合这些资源,希望得到您的支持与喜爱!

    数据科学概论

    An Introduction to Data Science

    Jeffrey Stanton, 2013

    School of Data Handbook

    School of Data, 2015

    Data Jujitsu: The Art of Turning Data into Product

    DJ Patil, 2012

    数据科学家访谈

    The Data Science Handbook

    Carl Shan, Henry Wang, William Chen, & Max Song, 2015

    The Data Analytics Handbook

    Brian Liou, Tristan Tao, & Declan Shener, 2015

    创建数据科学团队

    Data Driven: Creating a Data Culture

    Hilary Mason & DJ Patil, 2015

    Building Data Science Teams

    DJ Patil, 2011

    Understanding the Chief Data Officer

    Julie Steele, 2015

    数据分析

    The Elements of Data Analytic Style

    Jeff Leek, 2015

    分布式计算工具

    Hadoop:权威指南

    Tom White, 2011

    Data-Intensive Text Processing with MapReduce

    Jimmy Lin & Chris Dyer, 2010

    程序语言学习

    Python

    像计算机科学家一样思考Python

    Allen Downey, 2012

    Python Programming

    Wikibooks, 2015

    Python编程快速上手  ——让繁琐工作自动化

    Al Sweigart, 2015

    “笨办法”学Python

    Zed A. Shaw, 2013

    R语言

    R Programming for Data Science

    Roger D. Peng

    R Programming

    Wikibooks, 2014

    高级R语言编程指南

    Hadley Wickham, 2014

    SQL

    Learn SQL The Hard Way

    Zed. A. Shaw, 2010

    SQL Tutorial

    Tutorials Point

    数据挖掘和机器学习

    Introduction to Machine Learning

    Amnon Shashua, 2008

    Machine Learning

    Abdelhamid Mellouk & Abdennacer Chebira, 450

    Machine Learning – The Complete Guide

    Wikipedia

    社会媒体挖掘

    Reza Zafarani, Mohammad Ali Abbasi, & Huan Liu, 2014

    数据挖掘:实用机器学习工具与技术

    Ian H. Witten & Eibe Frank, 2005

    大数据:互联网大规模数据挖掘与分布式处理

    Jure Leskovec, Anand Rajaraman, & Jeff Ullman, 2014

    写给程序员的数据挖掘实践指南

    Ron Zacharski, 2015

    Data Mining with Rattle and R

    Graham Williams, 2011

    数据挖掘与分析:概念与算法

    Mohammed J. Zaki & Wagner Meria Jr., 2014

    贝叶斯方法:概率编程与贝叶斯推断

    Cam Davidson-Pilon, 2015

    数据挖掘技术 ——应用于市场营销、销售与客户关系管理

    Michael J.A. Berry & Gordon S. Linoff, 2004

    Inductive Logic Programming: Techniques and Applications

    Nada Lavrac & Saso Dzeroski, 1994

    Pattern Recognition and Machine Learning

    Christopher M. Bishop, 2006

    Machine Learning, Neural and Statistical Classification

    D. Michie, D.J. Spiegelhalter, & C.C. Taylor, 1999

    信息论、推理与学习算法

    David J.C. MacKay, 2005

    Data Mining and Business Analytics with R

    Johannes Ledolter, 2013

    Bayesian Reasoning and Machine Learning

    David Barber, 2014

    Gaussian Processes for Machine Learning

    C. E. Rasmussen & C. K. I. Williams, 2006

    Reinforcement Learning: An Introduction

    Richard S. Sutton & Andrew G. Barto, 2012

    Algorithms for Reinforcement Learning

    Csaba Szepesvari , 2009

    Big Data, Data Mining, and Machine Learning

    Jared Dean, 2014

    Modeling With Data

    Ben Klemens, 2008

    KB – Neural Data Mining with Python Sources

    Roberto Bello, 2013

    深度学习

    Yoshua Bengio, Ian J. Goodfellow, & Aaron Courville, 2015

    Neural Networks and Deep Learning

    Michael Nielsen, 2015

    Data Mining Algorithms In R

    Wikibooks, 2014

    Theory and Applications for Advanced Text Mining

    Shigeaki Sakurai, 2012

    统计和统计学习

    统计思维:程序员数学之概率统计

    Allen B. Downey, 2014

    贝叶斯思维:统计建模的Python学习法

    Allen B. Downey, 2012

    统计学习导论:基于R应用

    Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2013

    A First Course in Design and Analysis of Experiments

    Gary W. Oehlert, 2010

    数据可视化

    D3 Tips and Tricks

    Malcolm Maclean, 2015

    数据可视化实战:使用D3设计交互式图表

    Scott Murray, 2013

    大数据

    Disruptive Possibilities: How Big Data Changes Everything

    Jeffrey Needham, 2013

    Real-Time Big Data Analytics: Emerging Architecture

    Mike Barlow, 2013

    Big Data Now

    O’Reilly Media, Inc., 2012

    计算机科学

    Python自然语言处理

    Steven Bird, 2009

    计算机视觉:算法与应用

    Richard Szeliski, 2010

    Concise Computer Vision

    Reinhard Klette, 2010

    人工智能:一种现代的方法

    Stuart Russell, 1995

    当看到这里的时候,您即将阅读这些经典的书籍。无论现在处于什么水平,我都希望您有自己的收获!

    文章原标题60+ Free Books on Big Data, Data Science, Data Mining, Machine Learning, Python, R, and more ,译者:Anchor C.,审阅:虎说八道

    相关文章

      网友评论

        本文标题:福利|热门技术看什么?这份书单告诉你!

        本文链接:https://www.haomeiwen.com/subject/kwzbixtx.html