美文网首页博弈论
博弈论-落后的感应:国际象棋、战略和可信威胁

博弈论-落后的感应:国际象棋、战略和可信威胁

作者: CSTDOG | 来源:发表于2019-03-04 14:34 被阅读0次

    游戏:Zermelo 理论

    • 参与人:2 players
    • 完全信息博弈:一旦轮到某个人做决定时,他完全清楚的知道这个博弈前的变化,也就是说这些有顺序的决定都是在完全掌握信息的情况下做出的。
    • 游戏约束:这是个有限节数的游戏,不会无限延展循环下去
    • 游戏结果:
      • 一号参与人获胜,W1
      • 一号参与人落败,L1
      • 平局,T
    • 结论(可利用归纳证明法证明下面结论):
      • 作为参与人时有绝对把握胜利,参与人2落败
      • 平局
      • 作为参与人2时绝对有把握胜利,参与人1落败
    • 应用:国际象棋在完全信息博弈下进行有限次循环是有解的,可以达到平局状态
    • 归纳法证明理论
      1551608103(1).jpg
      1551616651(1).jpg

    游戏:石子

    • 规则:有m*n的石子阵列,如果一个人选择了其中一块石头,我就会把所有处在这个石头左边和正上面之间的所有石子拿走,拿到最后一个石子的就是失败者
    • 上述理论说明,这个博弈必定有解,而解的结果是什么由N和M决定
    • 思考题:这个解是什么?也就是说这游戏的技巧是什么?
    • 定义1:完全信息博弈:在任一个节点上,或者说每个节点上的被轮到的参与者,都知道自己处在整个博弈的哪个节点的博弈(节点:树形图),也就是说参与者知道自己怎么走到该位置。
    • 定义2:一号参与人的纯策略是一个完整的行动计划,也就是说,这个纯策略明确了一号将在每一个节点采取怎样的策略

    游戏

    image.png
    • 问题:在这里二号参与人的策略是什么?
      • 如果参与人1选D,则参与人2不需要选择,如果参与人2需要选择,则参与人2选择r,在做逆向归纳时需要对后续节点进行考虑
      • 参与人1在这里一共有四种策略:[u/u,u/d,d/u,d,d],虽然1第一步选择d的时候,不需要进行第二次选择,但是仍然要考虑2做出选择时,本身应该要怎样选择
    • 收益矩阵:不使用逆向回归法,可以利用下表找纳什均衡,NE=(DDR,DUR)
    策略 L R
    u/u 2,4 0,2
    u/d 3,1 0,2
    d/u 1,0 1,0
    d/d 1,0 1,0
    • 从这个游戏中可以知道,不能机械的找纳什均衡,在这个游戏中纳什均衡时,2采用的策略在1选择D后毫无意义,此时的投入就是浪费成本
    • 结论:如果一个均衡是建立在不足信的威胁的基础上,那么后面的参与者分析并做出的策略可能没有意义

    相关文章

      网友评论

        本文标题:博弈论-落后的感应:国际象棋、战略和可信威胁

        本文链接:https://www.haomeiwen.com/subject/lgciuqtx.html