from playLA.Vector import Vector
class Matrix(object):
def __init__(self, list2d):
"""初始化矩阵类"""
self._values = [row[:] for row in list2d]
@classmethod
def zero(cls, r, c):
"""返回一个r行,c列的零矩阵"""
return cls([[0]*c for _ in range(r)])
def __add__(self, other):
"""返回两个矩阵的加法的结果"""
assert self.shape() == other.shape(), \
"这两个矩阵的大小必须是一样的"
return Matrix([a + b for a, b in zip(self.row_vector(i), other.row_vector(i))]
for i in range(self.row_num()))
def __sub__(self, other):
"""返回两个矩阵的减法的结果"""
assert self.shape() == other.shape(), \
"这两个矩阵的大小必须是一样的"
return Matrix([a - b for a, b in zip(self.row_vector(i), other.row_vector(i))]
for i in range(self.row_num()))
def dot(self, another):
"""返回矩阵和矩阵 或 矩阵和向量的 相乘的结果"""
if isinstance(another, Vector):
# 矩阵和向量的相乘
assert self.col_num()==len(another), \
"矩阵 和 向量的长度不一致"
return Vector([self.row_vector(i).dot(another) for i in range(self.row_num())])
if isinstance(another, Matrix):
# 矩阵和矩阵的相乘
assert self.col_num() == another.row_num(), \
"矩阵和矩阵的维度不相同"
return Matrix([[self.row_vector(i).dot(another.col_vector(j)) for j in range(another.col_num())
for i in range(self.row_num())]])
def __mul__(self, k):
"""返回矩阵的数量乘法"""
return Matrix([e * k for e in self.row_vector(i)] for i in range(self.row_num()))
def __rmul__(self, k):
"""返回矩阵的数量乘法,这次返回的是k * self的值"""
return self * k
def __truediv__(self, k):
"""返回矩阵的数量除法: self / k"""
return (1 / k) * self
def __pos__(self):
"""返回矩阵取正的结果"""
return 1 * self
def __neg__(self):
"""返回矩阵取负的方法"""
return -1 * self
def row_vector(self, index):
"""返回矩阵的第index个行向量"""
return Vector(self._values[index])
def col_vector(self, index):
"""返回矩阵的第index个列向量"""
return Vector([row[index] for row in self._values])
def __getitem__(self, pos):
"""返回矩阵pos位置的元素"""
r, c = pos
return self._values[r][c]
def size(self):
"""返回矩阵中的元素的个数"""
r, c = self.shape()
return r * c
def shape(self):
"""返回矩阵的形状:(行数, 列数)"""
return len(self._values), len(self._values[0])
def row_num(self):
"""返回矩阵的行数"""
return self.shape()[0]
__len__ = row_num
def col_num(self):
"""返回矩阵的列数"""
return self.shape()[1]
def __repr__(self):
return "Matrix({})".format(self._values)
__str__ = __repr__
if __name__ == '__main__':
matrix = Matrix([[1, 2], [3, 4]])
print(matrix)
print("matrix.shape = {}".format(matrix.shape()))
print("matrix.size = {}".format(matrix.size()))
print("len(matrix) = {}".format(len(matrix)))
print("matrix[0][0] = {}".format(matrix[0, 0]))
# -------------- 实现矩阵的基本运算-----------------
matrix2 = Matrix([[5, 6], [7, 8]])
print("add: {}".format(matrix + matrix2))
print("subtract: {}".format(matrix - matrix2))
print("scalar-mul: {}".format(matrix * 2))
print("scalar-mul: {}".format(2 * matrix ))
print("zero 2 3: {}".format(Matrix.zero(2, 3)))
# 矩阵和矩阵之间的点乘
T = Matrix([[1.5, 0],[0, 2]])
p = Vector([5, 3])
print("T.dot(p) = {}".format(T.dot(p)))
p = Matrix([[0, 4, 5], [0, 0, 3]])
print("T.dot(P) = {}".format(T.dot(p)))
print("A.dot(B) = {}".format(matrix.dot(matrix2)))
print("B.dot(A) = {}".format(matrix2.dot(matrix)))
网友评论