@[toc]
1.约瑟夫问题
#include <stdio.h>
#include <stdlib.h>
#define LEN sizeof(struct node *)
struct node{
int data;
struct node *link;
};
void Josephu(int n, int m, int k){
int i;
struct node *H, *d, *p;
H = (struct node *)malloc(LEN);
H->data = 1; /* 设置第一个结点 */
d = H; /* d 用于指向最后一个结点 */
for (i = 1; i<n; i++) /* 循环中产生n-1个结点 */
{ p = (struct node *)malloc(LEN);
p->data = i; d->link = p; d = p; /* 新结点链在最后 */
} d->link = H; /* 封闭形成无头结点的循环链表 */
p = H;
for (i=0; i<k-1; i++) p = p->link; /* 找开始结点 */
while (p->link != p) /* 未到最后一个结点 */
{
for (i=0; i<m; i++) p = p->link; /* 开始报数 */
printf(" %-4d",p->link->data);
/* 打印结点p->link */
p->link = p->link->link; /* 删除已打印结点 */
}
printf("%-4d\n",p->data); // 打印最后结点
}
int main(){
int n,m,k;
printf("enter three numbers n,m,k:");//n是人数,k是开始序号,m是出列的标志
scanf("%d %d %d",&n,&m,&k);
Josephu(n,m,k);
return 0;
}
2.一元多项式的加法运算
#include <stdio.h>
#include <stdlib.h>
typedef struct LinkNode{
int coef;//系数
int index;//指数
struct LinkNode *next;
}LinkNode,*LinkList;
LinkList createLinkNode(){
LinkList L=(LinkList) malloc(sizeof(LinkNode));
L->next=NULL;
printf("请输入多项式(系数,指数):");
LinkNode *q=L,*p;
int coef,index;
scanf("%d,%d",&coef,&index);
while(!(coef==0&&index==0)){
p=(LinkNode *)malloc(sizeof(LinkNode));
p->next=NULL;
p->coef=coef;
p->index=index;
q->next=p;
q=p;
printf("请继续输入多项式(系数,指数):");
scanf("%d,%d",&coef,&index);
}
return L;
}
void add(LinkList L1,LinkList L2){
LinkNode *p1,*temp;
while(L2->next!=NULL){
p1=L1;
while(p1->next!=NULL&&p1->next->index!=L2->next->index){
p1=p1->next;
}
temp=L2->next;
L2->next=temp->next;
temp->next=NULL;
if(p1->next==NULL){
temp->next=p1->next;
p1->next=temp;
}else{
p1->next->coef+=temp->coef;
free(temp);
if(p1->next->coef==0){
temp=p1->next;
p1->next=temp->next;
free(temp);
}
}
}
free(L2);
}
int main(){
LinkList L1=createLinkNode();
LinkList L2=createLinkNode();
add(L1,L2);
LinkNode *p=L1->next;
if(p==NULL)return 0;
while(p!=NULL&&p->next!=NULL){
printf("%dx^%d+",p->coef,p->index);
p=p->next;
}
if(p!=NULL)printf("%dx^%d",p->coef,p->index);
return 0;
}
3.计算矩阵鞍点
#include <stdio.h>
void setupmatrix(int m, int n,int M[m][n]){
int i,j;
for(i=0;i<m;i++){
for(j=0;j<n;j++){
scanf("%d",&M[i][j]);
}
}
}
void printmatrix(int m,int n,int M[m][n]){
int i,j;
for(i=0;i<m;i++){
for(j=0;j<n;j++){
printf("%d ",M[i][j]);
}
printf("\n");
}
}
int saddlepoint(int m,int n,int M[m][n]){
int i,j,k;
int row,col;
for(i=0;i<m;i++){
int min = M[i][0];
for(j=0;j<n;j++){
if(min>M[i][j]){
min = M[i][j];
col = j;
}
}
int max = M[0][col];
for(k=0;k<m;k++){
if(max<M[k][col]){
max = M[k][col];
row = k;
}
}
if(max == min){
printf("the location is (%d,%d)\n",row,col);
return max;
}
}
return 0;
}
int main(){
int m,n,num;
printf("enetr m and n:");
scanf("%d %d",&m,&n);
int M[m][n];
printf("enter a matrix:\n");
setupmatrix(m,n,M);
saddlepoint(m,n,M);
printf("the saddle point is %d\n",saddlepoint(m,n,M));
//printmatrix(m,n,M);
return 0;
}
4.n阶魔方(n为奇数)
#include <stdio.h>
# define ROW 5
void MAGIC(int M[ROW][ROW],int n){
int i, j, num;
i = 0;
j = n/2;
for (num = 1;num<=n*n; num++) {
//printf("(i,j) = (%d,%d)\n",i,j);
if(M[i][j] == 0){
M[i][j] = num;
}else{
i+=2;
M[i][--j] = num;
}
if(i==0&&j==n-1){
i++;
}else if(i==0){
i=n-1;j++;
}else if(j==n-1){
i--;j=0;
}else{
i--;j++;
}
}
}
int main(){
int n = ROW;
int i,j;
int M[ROW][ROW];
for (i=0; i<n; i++){
for (j=0; j<n; j++){
M[i][j] = 0; // 清0 //
printf("%4d",M[i][j]);
}
printf("\n");
}
MAGIC(M,n);
for (i=0; i<ROW; i++){
for (j=0; j<ROW; j++){
printf("%4d",M[i][j]);
}
printf("\n");
}
return 0;
}
程序利用define行数来改变魔方大小,然后注释掉的一行语句可以用来追踪数字的位置变化情况。
5.稀疏矩阵的加法运算
#include <stdio.h>
#include <stdlib.h>
typedef struct threetuple{
int x;//表示非零元素的行标
int y;//表示非零元素的列标
int value;//表示非零元的值
}Triple;//用来存放三元组中每一个非零元素的信息
typedef struct infor{
int col;//列数
int row;//行数
int counts;//存放非零元的个数
}Tripledata;//用来存放三元组矩阵的信息
void printtuple(Triple m[],Tripledata n,int A[n.col][n.row]){//以矩阵形式输出两个三元祖
int i,j;
for(i=0;i<n.col;i++){
for(j=0;j<n.row;j++){
A[i][j]=0;//将所有元素赋值0
}
}
for(i=0;i<n.counts;i++){
A[m[i].x-1][m[i].y-1]=m[i].value;//把三元组非零元素在对应位置赋值
}
for(i=0;i<n.col;i++){
printf("\n");
for(j=0;j<n.row;j++){
printf("%2d",A[i][j]);//以矩阵形式打印
}
}
}
void add_print(Tripledata n,int A[n.col][n.row],int B[n.col][n.row]){
int i,j;
int C[n.col][n.row];//定义一个新矩阵用来存储相加后的结果。
printf("\n执行矩阵相加,并打印结果:\n");
for(i=0;i<n.col;i++){
for(j=0;j<n.row;j++){
C[i][j]=A[i][j]+B[i][j];//进行矩阵相加运算
printf("%-3d",C[i][j]);//相加和打印同时进行
}
printf("\n");
}
}
int main(){
Tripledata t[2];//定义两个信息结构体来存放矩阵信息
int i,j;
for(i=0;i<=1;i++){//行列数信息
printf("请输入第%d个元组的信息:\n依次输入行数,列数,非零元个数\n",i+1);
scanf("%d%d%d",&t[i].col,&t[i].row,&t[i].counts);//对非零元素进行赋值操作
}
if(t[0].col!=t[1].col||t[0].row!=t[1].row){
printf("该情况无法相加,程序退出");
exit(0);
}
int a,b;
a=t[0].counts;
b=t[1].counts;
Triple T1[a],T2[b];//定义两个非零元素信息结构体,前者对应A,后者是B
printf("请输入每个三元组矩阵的非零元素的信息:\n");
for(i=1,j=0;i<=t[0].counts;j++,i++){//每个三元组的信息;
printf("依次输入元组1第%d个非零元素行标,列标,数值",i);
scanf("%d%d%d",&T1[j].x,&T1[j].y,&T1[j].value);
}
for(i=1,j=0;i<=t[0].counts;j++,i++){//每个三元组的信息;
printf("依次输入元组2第%d个非零元素行标,列标,数值",i);
scanf("%d%d%d",&T2[j].x,&T2[j].y,&T2[j].value);
}
int A[t[0].col][t[0].row];//定义一个二维数组来存放矩阵信息
int B[t[1].col][t[1].row];//同上
printf("\nA的矩阵形式:");
printtuple(T1,t[0],A);//以矩阵形式打印A
printf("\nB的矩阵形式:");
printtuple(T2,t[1],B);//以矩阵形式打印B
add_print(t[0],A,B);
return 0;
}
6.“八皇后”问题
#include<stdio.h>
#define N 8
char board[N+2][N+2];
int count = 0;
struct Pos{
int yos; //行偏移量
int xos; //列偏移量
};
struct Pos pos[3] = { { -1, -1 }, { -1, 0 }, { -1, 1 } };
void Init(void){
for (int row = 0; row < N + 2; row++){
for (int col = 0; col < N + 2; col++){
board[0][col] = '#';
board[N + 1][col] = '#';
board[row][0] = '#';
board[row][N + 1] = '#';
}
}
for (int i = 1; i <= N; i++){
for (int j = 1; j <= N; j++){
board[i][j] = ' ';
}
}
}
void Show(void){
for (int i = 0; i < N + 2; i++){
for (int j = 0; j < N + 2; j++){
printf("%c", board[i][j]);
}
printf("\n");
}
}
int Check(int row, int col){
int ret = 1;
int nr;
int nc;
for (int i = 0; i < 3 && ret; i++){
nr = row;
nc = col;
while (ret&&board[nr][nc] != '#'){
if (board[nr][nc] == '*'){
ret = 0;
break;
}
nr = nr + pos[i].yos;
nc = nc + pos[i].xos;
}
}
return ret;
}
void Find(int row){
if (row>N){
Show();
count++;
printf("%d\n",count);
}
else{
for (int col = 1; col <= N; col++){
if (Check(row, col)){
board[row][col] = '*';
Find(row + 1);
board[row][col] = ' ';
}
}
}
}
int main(){
Init();
Find(1);
return 0;
}
7.中缀表达式和后缀表达式
#include <stdio.h>
#include <stdlib.h>
struct shu{
int front;
int rear;
}OPND;
struct others{
char *base;
char *top;
int size;
}OPTR;
char bijiao(char x, char y) {
if (x == '+') {
if (y == '+' || y == '-' || y == ')' || y == '#')
return('>');
else
return('<');
}
if (x == '-') {
if (y == '+' || y == '-' || y == ')' || y == '#')
return('>');
else
return('<');
}
if (x == '*') {
if (y == '(')
return('<');
else
return('>');
}
if (x == '/') {
if (y == '(')
return('<');
else
return('>');
}
if (x == '(') {
if (y == ')')
return('=');
if (y == '+' || y == '-' || y == '*' || y == '/' || y == '%' || y == '(')
return('<');
}
if (x == ')') {
if (y == '+' || y == '-' || y == '*' || y == '/' || y == '%' || y == ')' || y == '#')
return('>');
}
if (x == '#') {
if (y == '+' || y == '-' || y == '*' || y == '/' || y == '%' || y == '(')
return('<');
if (y == '#')
return('=');
}
}
void main() {
int n, i, j, k, s[50], flag;
char sopnd[50][50], str[50],t;
scanf("%d", &n);
getchar();
for (i = 0;i < n;i++) {
flag = 0;
OPND.front = 0;
OPND.rear = 0;
OPTR.size = 50;
OPTR.base = (char *)malloc(OPTR.size * sizeof(char));
OPTR.top = OPTR.base;
*OPTR.top++ = '#';
for (j = 0;j < 50;j++)
s[j] = 0;
gets(str);
for (j = 0;str[j] != '#' || *(OPTR.top - 1) != '#';j++) {
if (str[j] >= '0' && str[j] <= '9') {
for (k = 0;(str[j] <= '9' && str[j] >= '0') || str[j] == '.';) {
sopnd[OPND.rear][k] = str[j];
j++;
k++;
}
sopnd[OPND.rear][k] = '\0';
OPND.rear++;
j--;
}
else {
t= bijiao(*(OPTR.top - 1), str[j]); {
if(t=='<') {
*OPTR.top++ = str[j];
}
if(t=='='){
OPTR.top--;
}
if(t=='>') {
for (;OPND.front < OPND.rear;OPND.front++) {
if (flag == 1)
printf(" %s", sopnd[OPND.front]);
else
printf("%s", sopnd[OPND.front]);
flag = 1;
}
printf(" %c", *--OPTR.top);
j--;
}
}
}
}
printf("\n");
}
}
8.二叉排序树
#include <stdio.h>
#include <stdlib.h>
struct Treenode
{ int Data;
struct Treenode *Lchild, *Rchild;
};
void Setuptree(struct Treenode **T, int b, struct Treenode *p, int tag )
{ struct Treenode *x;
x=(struct Treenode *) malloc(sizeof(struct Treenode));
x->Data = b; x->Lchild = 0; x->Rchild = 0;
if ((*T)==0) (*T)=x;
else if (p != 0)
{ if (tag==0) { x->Lchild = p->Lchild; p->Lchild = x; }
else { x->Rchild = p->Rchild; p->Rchild = x; }
}
else if (tag==0)
{ p = (*T);
while (p->Lchild !=0) p=p->Lchild;
p->Lchild = x;
}
else { p = (*T);
while (p->Rchild !=0) p=p->Rchild;
p->Rchild = x;
}
}
void InOrder(struct Treenode *T){
if (T!= 0){
InOrder(T->Lchild);
printf("%4d",T->Data);
InOrder(T->Rchild);
}
}
int main(){
struct Treenode *T=0,*p, *(Q[20]);
int Front,Rear;
int A[100];
int i=0,j=0;
scanf("%d",&A[0]);
while(A[j++]!=-1){
scanf("%d",&A[j]);
}
Setuptree(&T, A[i++], p, 0); // 二叉树根结点
//printf("i = %d,j = %d\n",i,j);
int n = j-1;
/*for(int k=0;k<n;k++){
printf("%d ",A[k]);
}*/
while (i<n){
Front=0;
Rear=0;
Q[++Rear] = T;
while (Front<Rear){
p = Q[++Front];
if (p->Lchild!=0) Q[++Rear] = p->Lchild; // 左子树
else{
if (i<n) Setuptree(&T, A[i++], p, 0);
}
if (p->Rchild!=0) Q[++Rear] = p->Rchild; // 右子树
else{ if (i<n) Setuptree(&T, A[i++], p, 1);
}
}
}
InOrder(T);
return 0;
}
9.有向图与有向路径
#pragma once
#include<stdio.h>
#include<stdlib.h>
#define StackSize 100
typedef int DataType; //栈元素类型定义
typedef struct{
DataType stack[StackSize];
int top;
}SeqStack;
//将栈初始化为空栈只需要把栈顶指针top置为
void InitStack(SeqStack *S){
S->top=0;//把栈顶指针置为0
}
//判断栈是否为空,栈为空返回1,否则返回0
int StackEmpty(SeqStack S){
if(S.top==0)
return 1;
else
return 0;
}
//取栈顶元素。将栈顶元素值返回给e,并返回1表示成功;否则返回0表示失败。
int GetTop(SeqStack S,DataType *e){
if(S.top<=0){ //在取栈顶元素之前,判断栈是否为空
printf("栈已经空!\n");
return 0;
}else{
*e=S.stack[S.top-1]; //在取栈顶元素
return 1;
}
}
//将元素e进栈,元素进栈成功返回1,否则返回0
int PushStack(SeqStack *S,DataType e){
if(S->top>=StackSize){ //在元素进栈前,判断是否栈已经满
printf("栈已满,不能进栈!\n");
return 0;
}else{
S->stack[S->top]=e; //元素e进栈
S->top++; //修改栈顶指针
return 1;
}
}
//出栈操作。将栈顶元素出栈,并将其赋值给e。出栈成功返回1,否则返回0
int PopStack(SeqStack *S,DataType *e){
if(S->top<=0){ //元素出栈之前,判断栈是否为空
printf("栈已经没有元素,不能出栈!\n");
return 0;
}else{
S->top--; //先修改栈顶指针,即出栈
*e=S->stack[S->top]; //将出栈元素赋值给e
return 1;
}
}
//求栈的长度,即栈中元素个数,栈顶指针的值就等于栈中元素的个数
int StackLength(SeqStack S){
return S.top;
}
//清空栈的操作
void ClearStack(SeqStack *S){
S->top=0;
}
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include"SeqStack.h"
typedef char VertexType[4];
typedef char InfoPtr;
typedef int VRType;
#define MaxSize 50 //最大顶点个数
typedef enum{DG,DN,UG,UN}GraphKind; //图的类型:有向图、有向网、无向图和无向网
//边结点的类型定义
typedef struct ArcNode{
int adjvex; //弧指向的顶点的位置
InfoPtr *info; //弧的权值
struct ArcNode *nextarc; //指示下一个与该顶点相邻接的顶点
}ArcNode;
//头结点的类型定义
typedef struct VNode{
VertexType data; //用于存储顶点
ArcNode *firstarc; //指示第一个与该顶点邻接的顶点
}VNode,AdjList[MaxSize];
//图的类型定义
typedef struct{
AdjList vertex; //头结点
int vexnum,arcnum; //图的顶点数目与弧的数目
GraphKind kind; //图的类型
}AdjGraph;
//求图G中从顶点u到顶点v的一条简单路径
void BriefPath(AdjGraph G,int u,int v){
int k,i;
SeqStack S;
ArcNode *p;
int visited[MaxSize];
int parent[MaxSize]; //存储已经访问顶点的前驱顶点
InitStack(&S);
for(k=0;k<G.vexnum;k++)
visited[k]=0; //访问标志初始化
PushStack(&S,u); //开始顶点入栈
visited[u]=1; //访问标志置为1
while(!StackEmpty(S)){ //广度优先遍历图,访问路径用parent存储
PopStack(&S,&k);
p=G.vertex[k].firstarc;
while(p!=NULL){
if(p->adjvex==v){ //如果找到顶点v
parent[p->adjvex]=k; //顶点v的前驱顶点序号是k
printf("the path from %s to %s is:",G.vertex[u].data,G.vertex[v].data);
i=v;
do{ //从顶点v开始将路径中的顶点依次入栈
PushStack(&S,i);
i=parent[i];
}while(i!=u);
PushStack(&S,u);
while(!StackEmpty(S)){ //从顶点u开始输出u到v中路径的顶点
PopStack(&S,&i);
printf("%s ",G.vertex[i].data);
}
printf("\n");
}else if(visited[p->adjvex]==0){ //如果未找到顶点v且邻接点未访问过,则继续寻找
visited[p->adjvex]=1;
parent[p->adjvex]=k;
PushStack(&S,p->adjvex);
}
p=p->nextarc;
}
}
}
//返回图中顶点对应的位置
int LocateVertex(AdjGraph G,VertexType v){
int i;
for(i=0;i<G.vexnum;i++)
if(strcmp(G.vertex[i].data,v)==0)
return i;
return -1;
}
//采用邻接表存储结构,创建无向图N
void CreateGraph(AdjGraph *G){
int i,j,k,w;
VertexType v1,v2; /*定义两个顶点v1和v2*/
ArcNode *p;
printf("please enter node and line: ");
scanf("%d,%d",&(*G).vexnum,&(*G).arcnum);
printf("enter %d node:",G->vexnum);
for(i=0;i<G->vexnum;i++) /*将顶点存储在头结点中*/
{
scanf("%s",G->vertex[i].data);
G->vertex[i].firstarc=NULL; /*将相关联的顶点置为空*/
}
printf("please two nodes of the line:\n");
for(k=0;k<G->arcnum;k++) /*建立边链表*/
{
scanf("%s%s",v1,v2);
i=LocateVertex(*G,v1);
j=LocateVertex(*G,v2);
/*j为入边i为出边创建邻接表*/
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=j;
p->info=(InfoPtr*)malloc(sizeof(InfoPtr));
/*将p指向的结点插入到边表中*/
p->nextarc=G->vertex[i].firstarc;
G->vertex[i].firstarc=p;
/*i为入边j为出边创建邻接表*/
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=i;
p->info=NULL;
p->nextarc=G->vertex[j].firstarc;
G->vertex[j].firstarc=p;
}
(*G).kind=UG;
}
//销毁无向图G
void DestroyGraph(AdjGraph *G){
int i;
ArcNode *p,*q;
for(i=0;i<G->vexnum;++i) /*释放图中的边表结点*/
{
p=G->vertex[i].firstarc; /*p指向边表的第一个结点*/
if(p!=NULL) /*如果边表不为空,则释放边表的结点*/
{
q=p->nextarc;
free(p);
p=q;
}
}
(*G).vexnum=0; /*将顶点数置为0*/
(*G).arcnum=0; /*将边的数目置为0*/
}
//图G的邻接表的输出
void DisplayGraph(AdjGraph G){
int i;
ArcNode *p;
printf("the number of node is %d",G.vexnum);
for(i=0;i<G.vexnum;i++)
printf("%s ",G.vertex[i].data);
printf("\nthe number of line is:%d\n",2*G.arcnum);
for(i=0;i<G.vexnum;i++)
{
p=G.vertex[i].firstarc;
while(p)
{
printf("(%s,%s) ",G.vertex[i].data,G.vertex[p->adjvex].data);
p=p->nextarc;
}
printf("\n");
}
}
void main(){
AdjGraph G;
CreateGraph(&G); /*采用邻接表存储结构创建图G*/
DisplayGraph(G); /*输出无向图G*/
BriefPath(G,0,4); /*求图G中从顶点a到顶点e的简单路径*/
DestroyGraph(&G); /*销毁图G*/
system("pause");
}
10.快速排序和希尔排序
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void ShellSort(int V[], int n){
int compcnt=0,movecnt=0;
int d=n, x, i, j,k;
while (d > 1){
d = d/2;
for (i=d; i<n; i++){
x = V[i];
j = i-d;
while (j >= 0 && V[j] > x){
compcnt++;
movecnt++;
V[j+d] = V[j];
j = j-d;
}
V[j+d] = x;
movecnt++;
}
}
printf("\nthe compcnt and movecnt of shellsort are %d and %d\n",compcnt,movecnt);
}
void QuickSort(int V[],int low, int high){
int i, j, x, k;
int compcnt=0,movecnt=0;
if (low <= high){
i=low+1; j=high; k=V[low];
while (i<j){
compcnt++;
while (low<j && V[j]>=k) j--;compcnt++;
while (i<high && V[i]<k) i++;compcnt++;
if (i<j){
movecnt++;
x=V[i]; V[i]=V[j]; V[j]=x;
}
}
if (low+1==high && V[low]<V[high]) j=low;
V[low]=V[j]; V[j]=k;
movecnt++;
QuickSort(V, low, j-1); QuickSort(V, j+1, high);
}
printf("the compcnt and movecnt of quicksort are %d and %d\n",compcnt,3*movecnt);
}
int main(){
int A[100],B[100],i;
srand(time(NULL));
for(i=0;i<100;i++){
A[i] = rand()%100;
B[i] = A[i];
printf("%d ",A[i]);
}
int n = sizeof(A)/sizeof(A[0]);
ShellSort(A,n);
printf("\n");
for(i=0;i<100;i++){
printf("%d ",A[i]);
}
QuickSort(B,0,n-1);
printf("\n");
for(i=0;i<100;i++){
printf("%d ",B[i]);
}
return 0;
}
网友评论