iOS卡顿优化

作者: iOS小洁 | 来源:发表于2023-02-25 23:16 被阅读0次

CPU,GPU

CPU(Central Processing Unit,中央处理器)

对象的创建和销毁、对象属性的调整、布局计算、文本的计算和排版、图片的格式转换和解码、图像的绘制(Core Graphics)

GPU(Graphics Processing Unit,图形处理器)

纹理的渲染

屏幕成像原理

CPU计算-->GPU渲染-->帧缓存-->视频控制器 --> 屏幕

在iOS中是双缓冲机制,有前帧缓存、后帧缓存

[图片上传失败...(image-252a7c-1677419325833)]

卡顿产生原因

CPU、GPU处理一帧画面需要的时间太长,垂直同步信号到来的时候没有内容可以显示

卡顿解决的主要思路

尽可能减少CPU、GPU资源消耗

按照60FPS的刷帧率,每隔16ms就会有一次VSync信号

卡顿优化-CPU

  • 尽量用轻量级的对象,比如用不到事件处理的地方,可以考虑使用CALayer取代UIView
  • 不要频繁地调用UIView的相关属性,比如frame、bounds、transform等属性,尽量减少不必要的修改
  • 尽量提前计算好布局,在有需要时一次性调整对应的属性,不要多次修改属性
  • Autolayout会比直接设置frame消耗更多的CPU资源
  • 图片的size最好刚好跟UIImageView的size保持一致
  • 控制一下线程的最大并发数量
  • 尽量把耗时的操作放到子线程
    • 文本处理(尺寸计算、绘制)
    • 图片处理(解码、绘制)

卡顿优化-GPU

  • 尽量避免短时间内大量图片的显示,尽可能将多张图片合成一张进行显示
  • GPU能处理的最大纹理尺寸是4096x4096,一旦超过这个尺寸,就会占用CPU资源进行处理,所以纹理尽量不要超过这个尺寸
  • 尽量减少视图数量和层次
  • 减少透明的视图(alpha<1),不透明的就设置opaque为YES
  • 尽量避免出现离屏渲染

离屏渲染

在OpenGL中,GPU有2种渲染方式:

  • On-Screen Rendering:当前屏幕渲染,在当前用于显示的屏幕缓冲区进行渲染操作
  • Off-Screen Rendering:离屏渲染,在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作

离屏渲染消耗性能的原因:

  • 需要创建新的缓冲区
  • 离屏渲染的整个过程,需要多次切换上下文环境,先是从当前屏幕(On-Screen)切换到离屏(Off-Screen)
  • 等到离屏渲染结束以后,将离屏缓冲区的渲染结果显示到屏幕上,又需要将上下文环境从离屏切换到当前屏幕

哪些操作会触发离屏渲染?

  • 光栅化,layer.shouldRasterize = YES
  • 遮罩,layer.mask
  • 圆角,同时设置layer.masksToBounds = YES、layer.cornerRadius大于0
    考虑通过CoreGraphics绘制裁剪圆角,或者叫美工提供圆角图片
  • 阴影,layer.shadowXXX
    如果设置了layer.shadowPath就不会产生离屏渲染

卡顿检测

1、PFS计算

创建一个CADisplayLink

_link = [CADisplayLink displayLinkWithTarget:[XZWeakProxy proxyWithTarget:self] selector:@selector(tick:)];
[_link addToRunLoop:[NSRunLoop mainRunLoop] forMode:NSRunLoopCommonModes];

计算

- (void)tick:(CADisplayLink *)link {
    if (_lastTime == 0) {
        _lastTime = link.timestamp;
        return;
    }

    _count++;
    NSTimeInterval delta = link.timestamp - _lastTime;
    if (delta < 1) return;
    _lastTime = link.timestamp;
    float fps = _count / delta;
    _count = 0;
}

link.timestamp是记录帧当前时间。这里是统计每秒帧数,肉眼可以看到变化
link.duration是每帧时间,1/link.duration是实时帧率。肉眼不容易发现变化

2、RunLoop

可以添加Observer到主线程RunLoop中,通过监听RunLoop状态切换的耗时,以达到监控卡顿的目的

通过子线程监测主线程的RunLoop,判断两个状态(kCFRunLoopBeforeSourceskCFRunLoopAfterWaiting)之间的耗时是否达到一定阈值

import UIKit

class XZBlockMonitor: NSObject {
    
    static let share = XZBlockMonitor.init()
    
    fileprivate var semaphore: DispatchSemaphore!
    fileprivate var timeoutCount: Int!
    fileprivate var activity: CFRunLoopActivity!
    
    private override init() {
        super.init()
    }

    
    public func start(){
        //监控两个状态
        registerObserver()
        
        //启动监控
        startMonitor()
    }
    
    private func registerObserver(){
        let controllerPointer = Unmanaged<XZBlockMonitor>.passUnretained(self).toOpaque()
        var context: CFRunLoopObserverContext = CFRunLoopObserverContext(version: 0, info: controllerPointer, retain: nil, release: nil, copyDescription: nil)
        let observer: CFRunLoopObserver = CFRunLoopObserverCreate(nil, CFRunLoopActivity.allActivities.rawValue, true, 0, { (observer, activity, info) in
            
            guard info != nil else{
                return
            }
            
            let monitor: XZBlockMonitor = Unmanaged<XZBlockMonitor>.fromOpaque(info!).takeUnretainedValue()
            monitor.activity = activity
            let sem: DispatchSemaphore = monitor.semaphore
            sem.signal()
            
        }, &context)
        
        CFRunLoopAddObserver(CFRunLoopGetMain(), observer, CFRunLoopMode.commonModes)
    }
    
    private func  startMonitor(){
        //创建信号
        semaphore = DispatchSemaphore(value: 0)
        //在子线程监控时长
        DispatchQueue.global().async {
            while(true){
                // 超时时间是 1 秒,没有等到信号量,st 就不等于 0, RunLoop 所有的任务
                let st = self.semaphore.wait(timeout: DispatchTime.now()+1.0)
                if st != DispatchTimeoutResult.success {
                    //监听两种状态kCFRunLoopBeforeSources 、kCFRunLoopAfterWaiting,
                    if self.activity == CFRunLoopActivity.beforeSources || self.activity == CFRunLoopActivity.afterWaiting {
                        
                        self.timeoutCount += 1
                        
                        if self.timeoutCount < 2 {
                            print("timeOutCount = \(self.timeoutCount)")
                            continue
                        }
                        // 一秒左右的衡量尺度 很大可能性连续来 避免大规模打印!
                        print("检测到超过两次连续卡顿")
                    }
                }
                self.timeoutCount = 0
            }
        }
    }
}

三方库

Swift

  • ANREye,其主要思路是:创建子线程进行循环监测,每次检测时设置标记置为true,然后派发任务到主线程,标记置为false,接着子线程睡眠超过阈值时,判断标记是否为false,如果没有,说明主线程发生了卡顿

OC

相关文章

  • iOS卡顿优化

    iOS卡顿优化

  • iOS 性能优化

    iOS的性能优化主要可提现在以前的几个方面:卡顿优化、耗电优化、启动优化、安装包的瘦身。 1、卡顿优化 在了解卡顿...

  • iOS必读 - 收藏集 - 掘金

    iOS 性能优化总结 - iOS - 掘金关于iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局...

  • IOS的性能优化包括哪几点

    iOS性能优化总结 iOS性能优化总结。关于 iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局...

  • iOS的优化

    面试的时候,优化的问题,问的挺多的iOS的优化分为很多,卡顿优化,耗电优化,启动优化,网络优化等 卡顿优化 首先的...

  • iOS 性能优化二

    主要讲解界面卡顿原因/优化方案/离屏渲染 iOS 性能优化一iOS 性能优化二iOS 性能优化三 1. 开发中遇到...

  • 21.性能优化

    关于iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局优化、电量优化、 安装包瘦身、启动优化、网...

  • iOS App优化:基本工具、业务优化、内存优化、卡顿优化、布局

    关于iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局优化、电量优化、 安装包瘦身、启动优化、网...

  • 性能优化

    关于iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局优化、电量优化、 安装包瘦身、启动优化、网...

  • iOS 性能优化总结

    关于iOS 性能优化梳理: 基本工具、业务优化、内存优化、卡顿优化、布局优化、电量优化、 安装包瘦身、启动优化、网...

网友评论

    本文标题:iOS卡顿优化

    本文链接:https://www.haomeiwen.com/subject/mykqldtx.html