美文网首页
算法|平衡二叉树、二叉树的所有路径、 左叶子之和

算法|平衡二叉树、二叉树的所有路径、 左叶子之和

作者: 激扬飞雪 | 来源:发表于2022-12-01 16:15 被阅读0次

一、 110. 平衡二叉树

题目链接:https://leetcode.cn/problems/balanced-binary-tree/
思路:使用后序遍历求每个节点的高度,高度差的绝对值大于1 就返回-1 ,反之则返回最大高度 + 1

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int getHeight(TreeNode root) {
        if (root == null) return 0;
        int leftHeight = getHeight(root.left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(root.right);
        if (rightHeight == - 1) return -1;
        if (Math.abs(leftHeight - rightHeight) > 1) {
            return -1;
        }
        return Math.max(leftHeight, rightHeight) + 1;
    }
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) != -1;
    }
}

二、 257. 二叉树的所有路径

题目链接:https://leetcode.cn/problems/binary-tree-paths/
思路一:使用前序遍历,到root.left == null && root.right == null 搜集集合

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private void backTrack(TreeNode root, List<Integer> paths, List<String> result) {
        paths.add(root.val);
        if (root.left == null && root.right == null) {
            //收集结果
            StringBuilder stringBuilder = new StringBuilder();
            for (int i = 0; i < paths.size(); i++) {
                stringBuilder.append(paths.get(i));
                if (i != paths.size() - 1) {
                    stringBuilder.append("->");
                }
            }
            result.add(stringBuilder.toString());
            return;
        }
        if (root.left != null) {
            backTrack(root.left, paths, result);
            //回溯
            paths.remove(paths.size() - 1);
        }
        if (root.right != null) {
            backTrack(root.right, paths, result);
            //回溯
            paths.remove(paths.size() - 1);
        }
    }
    public List<String> binaryTreePaths(TreeNode root) {
        List<Integer> paths = new ArrayList<>();
        List<String> result = new ArrayList<>();
        if (root == null) return result; 
        backTrack(root, paths, result); 
        return result;
    }
}

思路二、使用前序遍历 迭代法 使用两个栈 一个栈用于存节点,另外一个节点存路径,到达叶子节点后,搜集结果

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        if (root == null) return result;
        Stack<TreeNode> stackNode = new Stack<>();
        Stack<String>   stackPath = new Stack<>();
        stackNode.push(root);
        stackPath.push(root.val + "");
        while (!stackNode.isEmpty()) {
            TreeNode treeNode = stackNode.pop();
            String path = stackPath.pop();
            if (treeNode.left == null && treeNode.right == null) {
                result.add(path);
                continue;
            }

            if (treeNode.right != null) {
                stackNode.push(treeNode.right);
                stackPath.push(path + "->" + treeNode.right.val);
            }
            if (treeNode.left != null) {
                stackNode.push(treeNode.left);
                stackPath.push(path + "->" + treeNode.left.val);
            }
        
        }
        return result;
    }
}

三、404. 左叶子之和

题目链接:https://leetcode.cn/problems/sum-of-left-leaves/
思路一:使用后序遍历

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        int leftSum = sumOfLeftLeaves(root.left);
        int rightSum = sumOfLeftLeaves(root.right);
        int midSum = 0;
        if (root.left != null && root.left.left == null && root.left.right == null) {
            midSum = root.left.val;
        }
        return leftSum + midSum + rightSum;
    }
}

思路二:使用迭代前序遍历

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        int sum = 0;
        while (!stack.isEmpty()) {
            TreeNode treeNode = stack.pop();
            if (treeNode.left != null
             && treeNode.left.left == null 
             && treeNode.left.right == null) {
                 sum += treeNode.left.val;
             }
             if (treeNode.right != null) stack.push(treeNode.right);
             if (treeNode.left != null) stack.push(treeNode.left);
        }
        return sum;
    }
}

相关文章

网友评论

      本文标题:算法|平衡二叉树、二叉树的所有路径、 左叶子之和

      本文链接:https://www.haomeiwen.com/subject/mzbefdtx.html