本文由网络资料整理而来,如有问题,欢迎指正!
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
[java]
// 排序原始数据
int[] numbers = {49,38,65,97,76,13,27,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
1. 直接插入排序
基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
public static void insertSort(int[] array) {
for(inti =1; i < array.length; i++) {
int temp = array[i];
int j = i -1;
for(; j >=0&& array[j] > temp; j--) {
//将大于temp的值整体后移一个单位
array[j +1] = array[j];
}
array[j +1] = temp;
}
}
2.希尔排序
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。
先取一个正整数d1 < n, 把所有相隔d1的记录放一组,每个组内进行直接插入排序;然后d2 < d1,重复上述分组和排序操作;直至di = 1,即所有记录放进一个组中排序为止。
[java]
public static void shellSort(int[] array) {
int i;
int j;
int temp;
int gap =1;
int len = array.length;
while(gap < len /3) { gap = gap *3+1; }
for(; gap >0; gap /=3) {
for(i = gap; i < len; i++) {
temp = array[i];
for(j = i - gap; j >=0&& array[j] > temp; j -= gap) {
array[j + gap] = array[j];
}
array[j + gap] = temp;
}
}
}
3.简单选择排序
基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
[java]
public static void selectSort(int[] array) {
int position =0;
for(int i =0; i < array.length; i++) {
int j = i +1;
position = i;
int temp = array[i];
for(; j < array.length; j++) {
if(array[j] < temp) {
temp = array[j];
position = j;
}
}
array[position] = array[i];
array[i] = temp;
}
}
4.堆排序
基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
建堆:
交换,从堆中踢出最大数
剩余结点再建堆,再交换踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
[java]
public static void heapSort(int[] array) {
/*
* 第一步:将数组堆化
* beginIndex = 第一个非叶子节点。
* 从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
* 叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
*/
int len = array.length -1;
int beginIndex = (len -1) >>1;
for(int i = beginIndex; i >=0; i--) {
maxHeapify(i, len, array);
}
/*
* 第二步:对堆化数据排序
* 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
* 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
* 直至未排序的堆长度为 0。
*/
for(int i = len; i >0; i--) {
swap(0, i, array);
maxHeapify(0, i -1, array);
}
System.out.println(Arrays.toString(array) +" heapSort");
}
private static void swap(inti,intj,int[] arr) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
/**
* 调整索引为 index 处的数据,使其符合堆的特性。
*
* @param index 需要堆化处理的数据的索引
* @param len 未排序的堆(数组)的长度
*/
private static void maxHeapify(int index,int len,int[] arr) {
int li = (index <<1) +1;// 左子节点索引
int ri = li +1;// 右子节点索引
int cMax = li;// 子节点值最大索引,默认左子节点。
if(li > len) {
return;// 左子节点索引超出计算范围,直接返回。
}
if(ri <= len && arr[ri] > arr[li])// 先判断左右子节点,哪个较大。
{ cMax = ri; }
if(arr[cMax] > arr[index]) {
swap(cMax, index, arr);// 如果父节点被子节点调换,
maxHeapify(cMax, len, arr);// 则需要继续判断换下后的父节点是否符合堆的特性。
}
}
5.冒泡排序
基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
[java]
public static void bubbleSort(int[] array) {
int temp =0;
for(int i =0; i < array.length -1; i++) {
for(int j =0; j < array.length -1- i; j++) {
if(array[j] > array[j +1]) {
temp = array[j];
array[j] = array[j +1];
array[j +1] = temp;
}
}
}
}
6.快速排序
基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
[java]
public static void quickSort(int[] array) {
_quickSort(array,0, array.length -1);
System.out.println(Arrays.toString(array) +" quickSort");
}
private static int getMiddle(int[] list,intlow,inthigh) {
int tmp = list[low];//数组的第一个作为中轴
while(low < high) {
while(low < high && list[high] >= tmp) {
high--;
}
list[low] = list[high];//比中轴小的记录移到低端
while(low < high && list[low] <= tmp) {
low++;
}
list[high] = list[low];//比中轴大的记录移到高端
}
list[low] = tmp;//中轴记录到尾
return low;//返回中轴的位置
}
private static void _quickSort(int[] list,int low,int high) {
if(low < high) {
int middle = getMiddle(list, low, high);//将list数组进行一分为二
_quickSort(list, low, middle -1);//对低字表进行递归排序
_quickSort(list, middle +1, high);//对高字表进行递归排序
}
}
7、归并排序
基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
[java]
public static void mergingSort(int[] array) {
sort(array,0, array.length -1);
System.out.println(Arrays.toString(array) +" mergingSort");
}
private static void sort(int[] data,int left,int right) {
if(left < right) {
//找出中间索引
int center = (left + right) /2;
//对左边数组进行递归
sort(data, left, center);
//对右边数组进行递归
sort(data, center +1, right);
//合并
merge(data, left, center, right);
}
}
private static void merge(int[] data,int left,int center,int right) {
int[] tmpArr =new int[data.length];
int mid = center +1;
//third记录中间数组的索引
int third = left;
int tmp = left;
while(left <= center && mid <= right) {
//从两个数组中取出最小的放入中间数组
if(data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
}else{
tmpArr[third++] = data[mid++];
}
}
//剩余部分依次放入中间数组
while(mid <= right) {
tmpArr[third++] = data[mid++];
}
while(left <= center) {
tmpArr[third++] = data[left++];
}
//将中间数组中的内容复制回原数组
while(tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
8、基数排序
基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
[java]
public static void radixSort(int[] array) {
//首先确定排序的趟数;
int max = array[0];
for(int i =1; i < array.length; i++) {
if(array[i] > max) {
max = array[i];
}
}
int time =0;
//判断位数;
while(max >0) {
max /=10;
time++;
}
//建立10个队列;
ArrayList queue = new ArrayList<>();
for(int i =0; i <10; i++) {
ArrayList queue1 =new ArrayList<>();
queue.add(queue1);
}
//进行time次分配和收集;
for(int i =0; i < time; i++) {
//分配数组元素;
for(int anArray : array) {
//得到数字的第time+1位数;
int x = anArray % (int)Math.pow(10, i +1) / (int)Math.pow(10, i);
ArrayList queue2 = queue.get(x);
queue2.add(anArray);
queue.set(x, queue2);
}
int count =0;//元素计数器;
//收集队列元素;
for(int k =0; k <10; k++) {
while(queue.get(k).size() >0) {
ArrayList queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
System.out.println(Arrays.toString(array) +" radixSort");
网友评论