美文网首页
浅谈指标

浅谈指标

作者: 秋夜雨凉 | 来源:发表于2020-08-30 22:07 被阅读0次

前言

在日常工作中,数据同学经常会遇到以下问题

产品:为什么A页面的数据和B页面的数据对不上

数据:我去看看

一段时间后.....

数据:A页面数据是来自于AA表,计算逻辑是AAA,且没有包含AAA状态数据;而B页面是来自于BB表,计算逻辑完全不同。所以他们虽然名称相同,但其实数据并不一样。

产品:......

亦或是

数据:同一个指标在多个项目里用到,但A同学从A表取了数据;B同学从B表取了数据。我应该从哪个表取呢?如果这个指标的逻辑修改了,那这两个表应该怎么修改呢?新增一个指标,如何确认它的定义呢?

如果大家经常遇到上述类似问题,说明需要一个“数据字典”或者“指标库”来对指标的定义进行规范化和维护。

本文将会对指标进行初步介绍,并就如何规范指标进行深入讨论。

什么是指标

我们经常听到以下类似的对话:

”很多用户都对我们产品不满意。“

“感觉我们线下门店都没几个人了。”

“小程序感觉都没几个人看。”

这些不准确、具体的话,我们平时说说倒是无妨——毕竟具体的消息需要一定的成本。但是在工作中如果还是这个态度的话,恐怕就不太合适了。如果每个项目、活动连每天多少用户数、花多少钱赚多少钱都说不明白,那这个项目想来也没什么价值。

指标,就是对抗这种不确定的描述。

我们先来看百度百科中指标的定义

指标,是说明总体数量特征的概念及其数值的综合,故又称为综合指标。在实际的统计工作和统计理论研究中,往往直接将说明总体数量特征的概念称为指标。

简单的说,指标是衡量目标的方法,它为了衡量某个东西而存在。我们常说的日活、成本、利润、收入等,都是指标。

将刚才的话运用指标重新编辑下:

“据问卷抽样统计,60%的用户都对我们产品持负面意见。”

“近一个月线下门店的客流量同比下降30%,环比下降40;每小时客流量甚至不到10人。”

“近一周小程序的DAU不到200”

是不是显得准确了很多?

下面我们进一步介绍指标的构成

指标的构成

我们可以简单的分为3类:自身属性、业务和技术。

指标的构成

属性

  • 名称

    这里主要是统一认知,同一个名称——同一个定义。

  • 计量单位

    即该指标的单位;用户量——人;订单金额——元(人民币)等类似。

  • 所属类型

    根据指标自身的特点,我们可以将其分为3种

    • 基础指标:主要指不能再拆解的指标,通常表达业务实体原子量化属性的且不可再分的概念集合。如:订单数、订单总金额

    • 复合指标:建立在基础指标之上,通过一定运算规则形成的计算指标集合。如:平均订单金额=订单总金额/订单数

    • 派生指标:指基础指标或复合指标与维度成员、统计属性、管理属性等相结合产生的指标。如:近30天订单金额=用户在过去30天完成支付的订单总金额。

      指标和维度的结合,在指标中会被称为派生指标;在维度中则会被称为行为维度。

    基本所有指标都属于这三类。

  • 度量类型

    所有的指标都是度量,因此也必然符合度量的分类。

    • 全可加度量:指可以在任何维度进行聚合的指标,例如访问数、订单数、订单金额等。

    • 半可加度量:指可以根据某些维度进行聚合的指标,例如财务指标中的差额——它可以在除了时间维度以外的所有维度进行聚合。

    • 非可加度量:指完全不可以根据任何维度聚合的指标,主要指各种比率。例如利润率、转化率、消费率等

      非可加度量一般会在 OLAP 层或 BI 层进行处理。

业务

  • 业务域:

    高维度的业务划分方法,适用于特别庞大的业务系统,且业务板块之间的指标或业务重叠性较小。例如用车业务板块包含乘客端、司机端,电商业务板块包含商城、返利模块。

  • 业务过程

    可以概括为一个个不可拆分的行为事件,如下单、支付、评价等业务过程。一般来说一个过程只有一个时间

  • 可分析的维度

    单纯的指标没有任何分析价值,必须与维度相结合;例如时间维度、产品维度、客户维度、供应商维度等

  • 业务意义

    在业务上它的意义是什么?它衡量了什么东西?

  • 计算公式

    业务 OR 逻辑上的计算方式,例如 利润=收入-成本

技术

  • 产生系统

    数据产生于哪个系统;例如订单金额来自订单系统,用户访问来自于埋点系统。

  • 所在库表

    数据所在的库、表及相关字段。

我们用DAU(日活跃用户数)来举一个例子

属性
英文名 DAU
中文名 日活跃用户数
计量单位
所属类型 基础指标
度量类型 半可加度量
业务域 小程序
业务过程 用户启动小程序
可分析的维度 启动时间、用户、渠道等
业务意义 反应了小程序的运营情况
计算公式 根据用户ID去重
产生系统 埋点
所在库表 XX.XX

是不是顿时清晰了很多?

指标的特点

结果指标和过程指标

结果性指标,比如电商场景下的 GMV 或订单量,它通常是业务漏斗的底部,是一个不可更改的、后验性的指标。

过程性指标,可以简单理解为我到达这个结果之前经过的路径,以及通过这个路径去衡量转化好坏的过程,它是可干预的,而且通常是“用户行为”。

绝对指标和相对指标

绝对指标:是指统计量的绝对值,用于反映规模、大小的量级指标,如活跃用户数。

相对指标:是指统计量的比率值,用于反映程度、质量的健康水平指标,如人均使用时长相对指标是由绝对指标通过计算得来。

可以说绝对指标是相对指标的基础,而相对指标常常蕴含着更大的信息量,两者相辅而成才能更好的分析。

先导性指标和滞后性指标

这里主要根据是在用户的关键行为(例如用户下单支付)前还是后来判定。

虚荣指标

虚荣指标指的是看起来很吊但仔细想想并没有卵用的指标,例如总用户数——你知道总用户数又有什么用呢?你需要的是用户的新增、质量、活跃。而不是它总共多少人。

指标与相关概念

Data Science 中,指标有很多相关的定义,以下介绍部分:

指标和度量

指标是度量,但度量不全是指标。

在数据中,度量更多是相比维度的一个连续性数值;可以说我们常说的指标都是度量。

例如某个员工在今年剩余的年假天数,这毫无疑问是个度量,但要作为一个指标实在是有点牵强。

指标和维度

单一的指标没有任何意义,至少需要有一个维度以上的对比才能产生价值,且只有放在同一个维度下对比才有意义

  • 考虑的维度越多,洞察就可能越深入

  • 维度不是越多越好,分析维度最好控制在五维以内

  • 通过求和或均值的方式聚合某一些维度,可达到降维分析的效果

指标与指标体系

一个问题,往往有很多方面,只用一个指标不能充分说明问题。这就需要一组相关联的指标来描述,这就是数据指标体系。笔者会在后续进行详细深入的介绍。

相关文章

  • 浅谈指标

    前言 在日常工作中,数据同学经常会遇到以下问题 产品:为什么A页面的数据和B页面的数据对不上数据:我去看看一段时间...

  • 浅谈核心指标

    今天说说在各大公司招聘JD上出现频率非常高的一个词:提升核心指标相关数据。 用知乎体说的话,就是:当我们在谈论“提...

  • 浅谈数据指标以及指标体系

    作者介绍 @Albert 就职于某知名大数据服务公司; 专注于数据产品、数据埋点和用户行为数据分析和应用; “数据...

  • 解读运营指标:CAC/COC/CLV

    解读运营指标:CAC/COC/CLV 本节内容整理自秦路老师在人人都是产品经理发布的文章【浅谈运营的商业逻辑:CA...

  • 2020-07-02

    浅谈 浅谈模块设计宏内核 浅谈接口设计Flags 浅谈稳定性设计重试 浅谈人员业务结构设计矩阵式 浅谈接口设计 |...

  • 浅谈如何建设指标监控体系

    作者介绍 @ 图图 BAT数据产品经理; 专注于数据产品、并持续学习; “数据人创作者联盟”成员。 对于数据人尤其...

  • 浅谈Filecoin(二)

    浅谈Filecoin(二) 浅谈Filecoin(一)链接:浅谈Filecoin(一) (Verifiable)M...

  • 浅谈runtime关联

    浅谈runtime关联 浅谈runtime关联

  • 浅谈编译过程

    浅谈编译过程浅谈编译过程

  • 浅谈Android Architecture Component

    浅谈Android Architecture Components 浅谈Android Architecture ...

网友评论

      本文标题:浅谈指标

      本文链接:https://www.haomeiwen.com/subject/omcysktx.html