给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充
https://leetcode-cn.com/problems/surrounded-regions/
示例1:
image
输入:board = [["X","X","X","X"],["X","O","O","X"],["X","X","O","X"],["X","O","X","X"]]
输出:[["X","X","X","X"],["X","X","X","X"],["X","X","X","X"],["X","O","X","X"]]
解释:被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'。 任何不在边界上,或不与边界上的 'O' 相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
示例2:
输入:board = [["X"]]
输出:[["X"]]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j] 为 'X' 或 'O'
Java解法
思路:
- 初步设想,找到每个O,然后判断是否被包围,导致有各种牵扯,换个角度想想,我们只需要从O可以留下来思考便很简单了,
- 遍历最外层,判断是否有O,然后以该O为起点进行遍历标记能到达的O
package sj.shimmer.algorithm.m4_2021;
/**
* Created by SJ on 2021/4/4.
*/
class D67 {
public static void main(String[] args) {
char[][] chars = new char[][]{
{'X', 'X', 'X', 'X'},
{'X', 'O', 'O', 'X'},
{'X', 'X', 'O', 'X'},
{'X', 'O', 'X', 'X'}
};
chars = new char[][]{{'X'}};
chars = new char[][]{{'O','O'},{'O','O'}};
solve(chars);
for (char[] aChar : chars) {
System.out.println(aChar);
}
}
public static void solve(char[][] board) {
if (board != null && board.length != 0) {
int height = board.length;
int width = board[0].length;
for (int w = 0; w < width; w++) {
//上 w<width-index,h=index-1
if (board[0][w] == 'O') {
board[0][w] = 'A';
checkCanArriveO(board, height, width, 0, w);
}
//下 w<width-index,h=height-index
if (board[height - 1][w] == 'O') {
board[height - 1][w] = 'A';
checkCanArriveO(board, height, width, height - 1, w);
}
}
for (int h = 1; h < height-1; h++) {
//左 w=index-1,h<height-index
if (board[h][0] == 'O') {
board[h][0] = 'A';
checkCanArriveO(board, height, width, h, 0);
}
//右 w=w-index,h<height-index
if (board[h][width - 1] == 'O') {
board[h][width - 1] = 'A';
checkCanArriveO(board, height, width, h, width - 1);
}
}
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (board[i][j]=='O') {
board[i][j]='X';
}
if (board[i][j]=='A') {
board[i][j]='O';
}
}
}
}
}
public static void checkCanArriveO(char[][] board, int height, int width, int h, int w) {
//上
if (h - 1 >= 0 && board[h - 1][w] == 'O') {
board[h - 1][w] = 'A';
checkCanArriveO(board, height, width, h - 1, w);
}
//下
if (h + 1 < height && board[h + 1][w] == 'O') {
board[h + 1][w] = 'A';
checkCanArriveO(board, height, width, h + 1, w);
}
//左
if (w - 1 >= 0 && board[h][w - 1] == 'O') {
board[h][w - 1] = 'A';
checkCanArriveO(board, height, width, h, w - 1);
}
//右
if (w + 1 < width && board[h][w + 1] == 'O') {
board[h][w + 1] = 'A';
checkCanArriveO(board, height, width, h, w + 1);
}
}
}

官方解
-
深度优先搜索
我的参考解法,但官方解写的更加优雅
class Solution { int n, m; public void solve(char[][] board) { n = board.length; if (n == 0) { return; } m = board[0].length; for (int i = 0; i < n; i++) { dfs(board, i, 0); dfs(board, i, m - 1); } for (int i = 1; i < m - 1; i++) { dfs(board, 0, i); dfs(board, n - 1, i); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (board[i][j] == 'A') { board[i][j] = 'O'; } else if (board[i][j] == 'O') { board[i][j] = 'X'; } } } } public void dfs(char[][] board, int x, int y) { if (x < 0 || x >= n || y < 0 || y >= m || board[x][y] != 'O') { return; } board[x][y] = 'A'; dfs(board, x + 1, y); dfs(board, x - 1, y); dfs(board, x, y + 1); dfs(board, x, y - 1); } }
- 时间复杂度:O(n×m)
- 空间复杂度:O(n×m)
-
广度优先搜索
这是我最开始遍历外圈到内的解法正解,搞定了我无法对存储标记点的存储方案(使用list记录长度为2的int[]数组),最后标记遍历。
网友评论