美文网首页
TensotFlow 应用实例:11-使用CNN预测手写数字MN

TensotFlow 应用实例:11-使用CNN预测手写数字MN

作者: iccccing | 来源:发表于2017-08-06 14:36 被阅读0次

    TensotFlow 应用实例:11-使用CNN预测手写数字MNIST

    本文是我在学习TensotFlow 的时候所记录的笔记,共享出来希望能够帮助一些需要的人。

    什么是卷积神经网络 CNN (深度学习)?
    What is Convolutional Neural Networks (deep learning)?

    卷积神经网络 最常应用于 图片识别
    卷积是说神经网络不在对每一个点的数据进行处理,而是对一个区域进行处理

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    # 什么是卷积神经网络 CNN (深度学习)?
    # What is Convolutional Neural Networks (deep learning)?
    
    # 卷积神经网络 最常应用于 图片识别
    # 卷积 神经网络
    # 卷积是说神经网络不在对每一个点的数据进行处理,
    # 而是对一个区域进行处理
    # Google 自己的 CNN 教程
    # https://classroom.udacity.com/courses/ud730/lessons/6377263405/concepts/63796332430923
    
    
    # number 1 to 10 image data
    # 如果本地没有相应的数据包,会先下载,然后解压数据包
    # MNIST_data 是下载数据要保存的位置
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    # 添加神经层
    def add_layer(inputs, in_size, out_size, activation_function=None):
        # Weights define
        # 权重,尽量要是一个随机变量
        # 随机变量在生成初始变量的时候比全部为零效果要好的很多
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        # biases define
        # 偏值项,是一个列表,不是矩阵,默认设置为0 + 0.1
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        # W * x + b
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        # 如果activation_function是空的时候就表示是一个线性关系直接放回即可
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    
    # 计算精确度
    # compute_accuracy 要使用
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
        correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        # result 是一个百分比,百分比越高证明越准确
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
        return result
    
    
    def weight_variable(shape):
        # normal 产生随机变量
        # stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
        # of the truncated normal distribution.
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    # x input W is weight
    def conv2d(x, W):
        # strides [1, x_movement, y_movement, 1]
        # 前后都要为1
        # VALID SAME padding方式
        # VALID 较小, SAME 和原图一样
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        result = tf.nn.max_pool(x,
                                ksize=[1, 2, 2, 1],
                                strides=[1, 2, 2, 1],
                                padding='SAME')
        return result
    
    
    # 定义 placeholder
    xs = tf.placeholder(tf.float32, [None, 784])/255.
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    # 将输入的xs转换为图片的形式
    # -1 不管维度
    # 28*28 像素点
    # 1 channel 是黑白
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    # print(x_image.shape) # [n_samples, 28, 28, 1]
    
    
    # conv1 layer
    # 5 * 5 patch ,长*宽
    # in size is 1, image的厚度,输入的厚度
    # out is 32, 输出的深度,厚度
    W_conv1 = weight_variable([5, 5, 1, 32])
    # 32个输出,所有b为32
    b_conv1 = bias_variable([32])
    # conv2d output size 28x28X32
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    # max_pool_2x2 output 14x14x32
    h_pool1 = max_pool_2x2(h_conv1)
    
    # conv2 layer
    # out is 64, 输出的深度,厚度
    W_conv2 = weight_variable([5, 5, 32, 64])
    # 32个输出,所有b为64
    b_conv2 = bias_variable([64])
    # conv2d output size 14x14x64
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    # max_pool_2x2 output 7x7x64
    h_pool2 = max_pool_2x2(h_conv2)
    
    # func1 layer
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] >> [n_samples, 7*7*64]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    # drop out
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    
    # func2 layer
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    # prediction = add_layer(xs, 784, 10,  activation_function=tf.nn.softmax)
    
    # cross_entropy 分类的时候经常使用softmax + cross_entropy来计算的
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                  reduction_indices=[1]))
    # train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    # AdamOptimizer 需要的学习速率应该更小
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    
    sess = tf.Session()
    
    # important step
    # tf.initialize_all_variables() no long valid from
    # "2017-03-02", "Use `tf.global_variables_initializer` instead."
    init = tf.global_variables_initializer()
    sess.run(init)
    
    
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))
    
    
    
    

    本文代码GitHub地址 tensorflow_learning_notes

    相关文章

      网友评论

          本文标题:TensotFlow 应用实例:11-使用CNN预测手写数字MN

          本文链接:https://www.haomeiwen.com/subject/otoglxtx.html