使用缓存时,业务系统大概的调用流程如下图:
当我们查询一条数据时,先去查询缓存,如果缓存有就直接返回,如果没有就去查询数据库,然后返回。这种情况下就可能会出现一些现象。
1. 缓存穿透:
1.1 概念:
key对应的数据在数据源并不存在,每次针对此key的请求从缓存获取不到,请求都会到数据源,从而可能压垮数据源。比如用一个不存在的用户id获取用户信息,不论缓存还是数据库都没有,若黑客利用此漏洞进行攻击可能压垮数据库。
1.2 解决方法
1.2.1 缓存空值
-
操作:
之所以会发生穿透,就是因为缓存中没有存储这些空数据的key。从而导致每次查询都到数据库去了。那么我们就可以为这些key对应的值设置为null 丢到缓存里面去。后面再出现查询这个key 的请求的时候,直接返回null 。这样,就不用在到数据库中去走一圈了,但是别忘了设置过期时间,设置一个较短的过期时间。 -
缺点:
设置空值是可以阻挡大量穿透请求的,但是如果有大量的获取并不存在数据的穿透请求的话例如恶意攻击,则会浪费缓存空间,如果这种null值过量的话,还会淘汰掉本身缓存存在的数据,这就会使我们的缓存命中率下降。 -
建议
在使用设置空值方案时,我们要做好监控,预防缓存空间被过多null值占领造成的缓存空间浪费,如果这种数据量太大,就不再建议使用,那就使用另一种方案,即布隆过滤器。
1.2.2 BloomFilter
BloomFilter 类似于一个hbase set 用来判断某个元素(key)是否存在于某个集合中。
这种方式在大数据场景应用比较多,比如 Hbase 中使用它去判断数据是否在磁盘上。还有在爬虫场景判断url 是否已经被爬取过。
这种方案可以加在第一种方案中,在缓存之前在加一层 BloomFilter ,在查询的时候先去 BloomFilter 去查询 key 是否存在,如果不存在就直接返回,存在再走查缓存 -> 查 DB。
2. 缓存击穿:
2.1 概念:
key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
2.2 解决方法
2.2.1 互斥锁
上面的现象是多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。
伪代码
public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);
} else { //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
sleep(50);
get(key); //重试
}
} else {
return value;
}
}
3. 缓存雪崩:
3.1 概念
缓存雪崩的情况是说,当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上面。结果就是DB 称不住,挂掉。(与缓存击穿的区别在于这里针对很多key缓存,前者则是某一个key。)
缓存失效时的雪崩效应对底层系统的冲击非常可怕!大多数系统设计者考虑用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。还有一个简单方案就时讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
3.2 解决方案
3.2.1 事前:
-
使用集群缓存,保证缓存服务的高可用
这种方案就是在发生雪崩前对缓存集群实现高可用,如果是使用 Redis,可以使用 主从+哨兵 ,Redis Cluster 来避免 Redis 全盘崩溃的情况。
3.2.2 事中:
-
ehcache本地缓存 + Hystrix限流&降级,避免MySQL被打死
使用 ehcache 本地缓存的目的也是考虑在 Redis Cluster 完全不可用的时候,ehcache 本地缓存还能够支撑一阵。
使用 Hystrix进行限流 & 降级 ,比如一秒来了5000个请求,我们可以设置假设只能有一秒 2000个请求能通过这个组件,那么其他剩余的 3000 请求就会走限流逻辑。
然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值呀之类的。以此来保护最后的 MySQL 不会被大量的请求给打死。
3.2.3 事后:
-
开启Redis持久化机制,尽快恢复缓存集群
一旦重启,就能从磁盘上自动加载数据恢复内存中的数据。
防止雪崩方案如下图所示:
image.png
解决热点数据集中失效问题
我们在设置缓存的时候,一般会给缓存设置一个失效时间,过了这个时间,缓存就失效了。
对于一些热点的数据来说,当缓存失效以后会存在大量的请求过来,然后打到数据库去,从而可能导致数据库崩溃的情况。
4 解决办法
4.1设置不同的失效时间
为了避免这些热点的数据集中失效,那么我们在设置缓存过期时间的时候,我们让他们失效的时间错开。
比如在一个基础的时间上加上或者减去一个范围内的随机值。
4.2 互斥锁
结合上面的击穿的情况,在第一个请求去查询数据库的时候对他加一个互斥锁,其余的查询请求都会被阻塞住,直到锁被释放,从而保护数据库。
但是也是由于它会阻塞其他的线程,此时系统吞吐量会下降。需要结合实际的业务去考虑是否要这么做。
网友评论