美文网首页单细胞转录组
Seurat3.0中的数据可视化新方法

Seurat3.0中的数据可视化新方法

作者: Seurat_Satija | 来源:发表于2020-12-20 15:28 被阅读0次

    v3.0中的数据可视化新方法

    编译:2020-10-02


    我们将使用2700 PBMC教程中先前计算的Seurat对象,在Seurat中演示可视化技术。您可以从SeuratData下载此数据集

    SeuratData::InstallData("pbmc3k")
    
    library(Seurat)
    library(SeuratData)
    library(ggplot2)
    library(patchwork)
    data("pbmc3k.final")
    pbmc3k.final$groups <- sample(c("group1", "group2"), size = ncol(pbmc3k.final), replace = TRUE)
    features <- c("LYZ", "CCL5", "IL32", "PTPRCAP", "FCGR3A", "PF4")
    pbmc3k.final
    
    ## An object of class Seurat 
    ## 13714 features across 2638 samples within 1 assay 
    ## Active assay: RNA (13714 features, 2000 variable features)
    ##  2 dimensional reductions calculated: pca, umap
    
    # Ridge plots - from ggridges. Visualize single cell expression distributions in each cluster
    RidgePlot(pbmc3k.final, features = features, ncol = 2)
    
    image.png
    # Violin plot - Visualize single cell expression distributions in each cluster
    VlnPlot(pbmc3k.final, features = features)
    
    image.png
    # Feature plot - visualize feature expression in low-dimensional space
    FeaturePlot(pbmc3k.final, features = features)
    
    image.png
    # Dot plots - the size of the dot corresponds to the percentage of cells expressing the feature
    # in each cluster. The color represents the average expression level
    DotPlot(pbmc3k.final, features = features) + RotatedAxis()
    
    image.png
    # Single cell heatmap of feature expression
    DoHeatmap(subset(pbmc3k.final, downsample = 100), features = features, size = 3)
    
    image.png

    相关文章

      网友评论

        本文标题:Seurat3.0中的数据可视化新方法

        本文链接:https://www.haomeiwen.com/subject/pffhnktx.html