Softmax函数原理及Python实现

作者: 七八音 | 来源:发表于2020-05-20 11:25 被阅读0次

    Softmax原理


    Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。

    对于一个k维向量z,我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果,具体计算公式为:
    softmax(x_i) = \frac{exp(x_i)}{\sum_j exp(x_j)}
    对于k维向量z来说,其中z_i \in R,我们使用指数函数变换可以将元素的取值范围变换到(0, +\infin),之后我们再所有元素求和将结果缩放到[0,1],形成概率分布。

    常见的其他归一化方法,如max-min、z-score方法并不能保证各个元素为正,且和为1。

    Softmax性质


    输入向量x加上一个常数c后求softmax结算结果不变,即:
    softmax(x) = softmax(x+c)
    我们使用softmax(x)的第i个元素的计算来进行证明:
    softmax(x_i+c) = \frac{exp(x_i+c)}{\sum_jexp(x_j+c)} \\= \frac{exp(x_i) * exp(c)}{\sum_j[exp(x_j) * exp(c)]} \\=\frac{exp(x_i) * exp(c)}{exp(c) * sum_j exp(x_j)} \\=\frac{exp(x_i)}{\sum_jexp(x_j)} \\= softmax(x_i)

    函数实现


    由于指数函数的放大作用过于明显,如果直接使用softmax计算公式softmax(x_i) = \frac{exp(x_i)}{\sum_j exp(x_j)}进行函数实现,容易导致数据溢出(上溢)。所以我们在函数实现时利用其性质:先对输入数据进行处理,之后再利用计算公式计算。具体使得实现步骤为:

    1. 查找每个向量x的最大值c;
    2. 每个向量减去其最大值c, 得到向量y = x-c;
    3. 利用公式进行计算,softmax(x) = softmax(x-c) = softmax(y)

    代码如下:

    import numpy as np
    
    def softmax(x):
        """
        softmax函数实现
        
        参数:
        x --- 一个二维矩阵, m * n,其中m表示向量个数,n表示向量维度
        
        返回:
        softmax计算结果
        """
        assert(len(X.shape) == 2)
        row_max = np.max(X, axis=axis).reshape(-1, 1)
        X -= row_max
        X_exp = np.exp(X)
        s = X_exp / np.sum(X_exp, axis=axis, keepdims=True)
    
        return s
    

    测试一下:

    a = [[1,2,3],[-1,-2,-3]]
    b = [[1,2,3]]
    c = [1,2,3]
    a = np.array(a)
    b = np.array(b)
    c = np.array(c)
    
    print(softmax(a))
    print(softmax(b))
    print(softmax(c)) # error
    

    输出结果为:

    [[ 0.09003057  0.24472847  0.66524096]
     [ 0.66524096  0.24472847  0.09003057]]
    [[ 0.09003057  0.24472847  0.66524096]]
    Traceback (most recent call last):
        assert(len(X.shape) == 2)
    AssertionError
    
    
    欢迎大家关注公众号,一起学习成长

    相关文章

      网友评论

        本文标题:Softmax函数原理及Python实现

        本文链接:https://www.haomeiwen.com/subject/pgygohtx.html