美文网首页
面试题:降维的必要性和目的是什么

面试题:降维的必要性和目的是什么

作者: bd7e4a65be2b | 来源:发表于2022-04-15 21:24 被阅读0次

关注微信公众号"百面机器学习"获取更多


降维的必要性:

多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。

高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%。

过多的变量,对查找规律造成冗余麻烦。

仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。

降维的目的:

减少预测变量的个数。

确保这些变量是相互独立的。

提供一个框架来解释结果。相关特征,特别是重要特征更能在数据中明确的显示出来;如果只有两维或者三维的话,更便于可视化展示。

数据在低维下更容易处理、更容易使用。

去除数据噪声。

降低算法运算开销。

更多面试题----------------------

基础概念

逻辑回归与朴素贝叶斯有什么区别

机器学习学习方式主要有哪些?

监督学习的步骤主要有哪些?

逻辑回归与朴素贝叶斯有什么区别

线性回归和逻辑回归的区别

代价函数,损失函数和目标函数的区别?

随机梯度下降法、批量梯度下降法有哪些区别?

LDA和PCA区别?

降维的必要性和目的是什么?

误差、偏差和方差的区别是啥?

梯度下降法缺点

批量梯度下降和随机梯度下降法的缺点?

如何对梯度下降法进行调优?

如何解决欠拟合

过拟合原因

如何解决过拟合

GBM

简单介绍一下XGBoost

XGBoost与GBDT的联系和区别有哪些?

为什么XGBoost泰勒二阶展开后效果就比较好呢?

XGBoost对缺失值是怎么处理的?

XGBoost为什么快

XGBoost防止过拟合的方法

XGBoost为什么若模型决策树的叶子节点值越大,越容易过拟合呢?

XGBoost为什么可以并行训练?

XGBoost中叶子结点的权重如何计算出来

XGBoost中的一棵树的停止生长条件

Xboost中的min_child_weight是什么意思

Xgboost中的gamma是什么意思

Xgboost中的参数

RF和GBDT的区别

xgboost本质上是树模型,能进行线性回归拟合么

Xgboos是如何调参的

为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

为什么常规的gbdt和xgboost不适用于类别特别多的特征?

怎么处理类别特征在树模型下?

集成学习方法

bagging和boosting区别

为什么bagging减少方差

什么场景下采用bagging集成方法

bagging和dropout区别

为什么说bagging是减少variance,而boosting是减少bias?

adaboost为什么不容易过拟合?

组合弱学习器的算法?

DL

基础理论

说一下局部最优与全局最优的区别?

深度学习里,如何判断模型陷入局部最优?

Transfomer

Transformer为何使用多头注意力机制?

Transformer 相比于 RNN/LSTM,有什么优势?为什么

Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?

Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?

为什么在进行softmax之前需要对attention进行scaled

说一下在计算attention score的时候如何对padding做mask操作?

为什么在进行多头注意力的时候需要对每个head进行降维?

大概讲一下Transformer的Encoder模块?

简单介绍一下Transformer的位置编码?有什么意义和优缺点?

你还了解哪些关于位置编码的技术,各自的优缺点是什么?

简单讲一下Transformer中的残差结构以及意义。

为什么transformer块使用LayerNorm而不是BatchNorm?LayerNorm 在Transformer的位置是哪里?

简答讲一下BatchNorm技术,以及它的优缺点。

简单描述一下Transformer中的前馈神经网络?使用了什么激活函数?相关优缺点?

Decoder阶段的多头自注意力和encoder的多头自注意力有什么区别?

Transformer的并行化提现在哪个地方?

Decoder端可以做并行化吗?

简单描述一下wordpiece model 和 byte pair encoding,有实际应用过吗?

Transformer训练的时候学习率是如何设定的?Dropout是如何设定的,位置在哪里?Dropout 在测试的需要有什么需要注意的吗?

bert的mask为何不学习transformer在attention处进行屏蔽score的技巧

相关文章

  • 面试题:降维的必要性和目的是什么

    关注微信公众号"百面机器学习"获取更多 降维的必要性: 多重共线性和预测变量之间相互关联。多重共线性会导致解空间的...

  • 深度学习知识点汇总-机器学习基础(12)

    2.12 降维的必要性及目的 降维的必要性: 多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从...

  • 各类降维算法

    一、降维的概念 降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中. 1、降维的必要性 多重共...

  • 吴恩达机器学习-Chapter 15 降维

    目的:降维的应用、概念、及算法。降维的3个目的:数据压缩、加速算法(缩小特征变量)、数据可视化。降维本身也是一种无...

  • 数据降维——PCA、SVD

    1. 数据降维 数据降维的目的:数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的...

  • 14.降维(Dimensionality reduction)

    第八周 - Lecture 14降维的目的: 减少内存和存储 加快运算速度 可视化(降到2维或3维) PCA方法...

  • 主成分分析-原理

    1、降维是什么 降维简单直接的说就是减少自变量的个数,利于分类结果的可视化。 2、降维的两种方法 降低自变量个数的...

  • Autoencoder

    autoencoder的目的在于训练一个神经网络,用于信号降维,同时降维之后的信号能够很好地重建原信号。如下图所示...

  • 单细胞笔记5-tSNE和UMAP

    降维 降维顾名思义就是把数据或特征的维数降低,一般分为线性降维和非线性降维,比较典型的如下: 线性降维:PCA(P...

  • (十一)MDS算法

    1.用MDS的场景  从降维的层面来说,由于MDS是一种降维方法,那么它和PCA等其他降维方式有什么不同呢,什么样...

网友评论

      本文标题:面试题:降维的必要性和目的是什么

      本文链接:https://www.haomeiwen.com/subject/pigqertx.html