学号:20021211189 姓名:赵治伟
【嵌牛导读】滤波(Wave filtering)是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施,滤波分为经典滤波和现代滤波。
【嵌牛鼻子】信号的滤波方法
【嵌牛正文】
1.巴特沃斯低通滤波器去噪
在[B,A]=butter(n,wn)中,n是滤波器的阶数,Wn是截止频率,Wc = 截止频率*2/采样频率
Wc=2*50/Fs; %截止频率 50Hz
[b,a]=butter(4,Wc);
Signal_Filter=filter(b,a,Mix_Signal_1);
2.FIR低通滤波器去噪
F = [0:0.05:0.95];
A = [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ;
b = firls(20,F,A);
Signal_Filter = filter(b,1,Mix_Signal_1);
3. 移动平均滤波去噪
b = [1 1 1 1 1 1]/6;
Signal_Filter = filter(b,1,Mix_Signal_1);
4. 中值滤波去噪
Signal_Filter=medfilt1(Mix_Signal_1,10);
5. 维纳滤波去噪
维纳滤波是以均方误差最小(LMS(Least MeanSquare)为准则的,它根据过去观测值和当前观测值来估计信号的当前值,因此它的解形式是系统的传递函数或单位脉冲响应。
Rxx=xcorr(Mix_Signal_1,Mix_Signal_1); %得到混合信号的自相关函数
M=100; %维纳滤波器阶数
for i=1:M %得到混合信号的自相关矩阵
for j=1:M
rxx(i,j)=Rxx(abs(j-i)+N);
end
end
Rxy=xcorr(Mix_Signal_1,Signal_Original_1); %得到混合信号和原信号的互相关函数
for i=1:M
rxy(i)=Rxy(i+N-1);
end %得到混合信号和原信号的互相关向量
h = inv(rxx)*rxy'; %得到所要涉及的wiener滤波器系数
Signal_Filter=filter(h,1, Mix_Signal_1); %将输入信号通过维纳滤波器
6. 自适应滤波去噪
维纳滤波器参数是固定的,适合于平稳随机信号。卡尔曼滤波器参数是时变的,适合于非平稳随机信号
N=1000; %输入信号抽样点数N
k=100; %时域抽头LMS算法滤波器阶数
u=0.001; %步长因子
%设置初值
yn_1=zeros(1,N); %output signal
yn_1(1:k)=Mix_Signal_1(1:k); %将输入信号SignalAddNoise的前k个值作为输出yn_1的前k个值
w=zeros(1,k); %设置抽头加权初值
e=zeros(1,N); %误差信号
%用LMS算法迭代滤波
for i=(k+1):N
XN=Mix_Signal_1((i-k+1):(i));
yn_1(i)=w*XN';
e(i)=Signal_Original_1(i)-yn_1(i);
w=w+2*u*e(i)*XN;
end
7. 小波去噪
[xd,cxd,lxd] = wden(Mix_Signal_1,'sqtwolog','s','one',2,'db3');
plot(xd); %Mix_Signal_1 小波滤波后信号
网友评论